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Abstract 

 

In order to address the issues affecting crops and their pro-ductivity, plant 

phenotyping is one of the emerging research topics that requires attention. In 

this paper, we use Convolutional Neural Networks architecture to count the 

plants in agricultural areas. Regression is used in place of classification to 

estimate the number of plants in a field pho-tograph. This eliminates the 

requirement to know (or estimate) the max-imum anticipated number of 

plants. The CNN will be trained on these images and evaluated using them. 

Our tests demonstrate that using the Inception-v3 CNN architecture, we can 

get a Mean Error as low as pos-sible. 
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1 Introduction 

Plant density, or the number of plants per square metre, and crop productivity, or grain 

yield, are closely related in significant seeds like cotton seed [1, 2]. There-fore, efforts 

to improve crops by genetic and managerial means frequently centre on the plants that 

are being measured. Usually, hand counting methods are used for this, which calls for 

greater labour. Such methods are time-consuming, expensive, prone to mistakes, and 

slow. Thus, there is a definite demand for technology that make it possible to count 

plants accurately and efficiently at various crop growth stages 

Using the Convolutional Neural Networks (CNN) architecture, we solve the 

phenotyping job of counting crop plants in a field in this research. To evaluate number 

of plants, we employ multiple CNN architectures with few alterations. The number of 

plants 
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There is a respectable corpus of work on counting plants and other items in the 

literature. By using 3D laser scanning scans from a vehicle that is being driven through 

the field, plants are counted in [3]. The derived plant skeleton in [4] is used to estimate 

the population of maize plants and their locations. A poplar plantation’s tree crowns are 

counted in [5] by minimising an energy func-tion that represents the plants as uniformly 

spaced ellipsoids. Using an estimated item density function, objects are tallied in [6]. 

The training process needs that the object localisation be provided (i. e., pointing at the 

object). 

In order to learn illustrations of data with various degrees of thought, DL is a class of 

machine learning methods that employs a stack of many processing layers, with each 

succeeding layer using output from preceding layer as input. DL models are frequently 

created using multilayer neural networks, in which neurons serving as the connections 

between two successive layers of features basically reflect different parametrized 

nonlinear transformations. Weights and biases of the neurons, which are multiplied and 

added to the input, are two examples of model parameters. Up until the target layer or 

the decision layer, input data is converted forward in a layer-by-layer method. For 

instance, in order to alter an input image for a challenge of image classification, 

hierarchical nonlinear transformations and finally image class becomes the output at the 

target layer. 

An primary attribute set for deep neural network (typically picked at ran-dom) is used 

to start training such a model (DNN). At the target layer, errors are calculated between 

desired outputs provided by training data labels and the actual outputs for a huge 

number of instances. Settings are then updated using a feedback methodlogy layer by 

layer (from target to input) until the target layer reaches a suitable degree of judgement 

accuracy. For this training phase, error back-propagation algorithm is typically used. 

The typical features that a DNN learns have a hierarchical structure, mean-ing that 

while the lower layers of abstraction capture basic low-complexity fea-tures, the higher 

layers of abstraction form more complex features by combining the low-complexity 

features in intricate ways. DNNs have been trained using stochastic gradient descent 

(SGD) and its derivatives, including minibatch gra-dient descent [8], ADAM [9], and 

ADMM [10]. 

Many computer vision tasks have been addressed using deep learning tech-niques [7, 

8, 9]. To develop a classifier or other predictions, deep learning uses nonlinear attributes 

which will themselves trained to describe the input data [8, 10]. Deep learning has 

recently been applied to distant sensing tasks like target detection, image restoration, 

and pixel-based classification [11]. There has been research on counting the number of 

objects in photos using CNNs. In [12], a neural network with two convolutional and 

two linear layers is utilised to count objects. The MNIST dataset [13] and the UCSD 

dataset [14] are specifically used for counting digits and pedestrians, respectively. [15] 

describes two methods for counting items in photos. A density function is clustered 

using one. The second method makes use of Support Vector Machines (SVM) for the 

VGG19 CNN’s first two fully connected layers and final pooling layer in the CNN [16]. 

A ResNet architecture variant is suggested in [17] for enumeration and localising 

automo-biles from satellite photos. [21] uses a custom CNN to degenerate population 

in compact crowds. 



Deep Learning Approach for Auto Counting Complex Plants 17 

 

2 Collection of Data 

Due to the dearth of publicly accessible datasets for task of plant counting, we created 

our own dataset for training and testing. This dataset comprises of 4,316 RGB photos 

of cotton field regions taken by a UAV when it was flying at a 45-meter altitude. Three 

samples of the RGB images from our dataset are shown in Figure 2.1 which are taken 

on from July 13, 2022. Each photograph has a resolution of 540 by 140 pixels and 

between 0 and 20 plants. These pictures were created by cropping orthoimages of a 

cotton field that were taken by a UAV at different times during the growing season [19]. 

The UAV cameras are calibrated to establish their internal settings before producing 

the orthoimages. Triangulation is used to estimate the coordinates of sparse points as 

well as the location and positioning of each UAV image. [19] describes process used to 

create the orthoimages. Produced from UAV pictures taken on July 11, 2021. 

A panel is one of the field’s three primary divisions. Because it is the only part of the 

central panel that can be groundtruthed, only the upper half is used for analysis. The 

plants in other parts of the field are too closely packed together to be physically counted. 

Ranges are divisions within a panel that run parallel to the direction of the plant 

alignment, while rows are divisions that run perpendicular to that direction. 

A part of the orthoimage in Figure 3 with two ranges and five rows, gen-erating ten 

sub-rows, is an example of a panel with M rows and N ranges and MN sub-rows, which 

is an aligned ensemble of a few plants. The orthophoto is used to create the images in 

our dataset in the manner described below. The orthophoto’s Region Of Interest (ROI) 

is first cropped using the user’s specified coordinates. The central panel of Figure 2 is 

ROI for our dataset. The panel & a few pixels of the neighboring soil must be totally 

included in the ROI, although the coordinates do not need to be extremely exact. Next, 

we create a mask utilising the segmentation method, we described in [19]. Summation 

of P (x)=I (x,y) (Equation 2) where each column x of the ROI receives a vertical sum 

for each. We refer to the "horizontal profile" as ph. An illustration of a horizontal profile 

is shown in Figure 4. The vertical lines separating the field’s ranges are shown by the 

valleys in ph (). These lines should ideally only cross soil that is not covered by plants 

and not interfere with any vegetation. In actuality, the rows of field are not perfectly 

straight, and there may even be unanticipated weeds, so pH at the troughs is higher than 

zero. The increase around x=22, 745 can be attributed to weeds & grass from external 

field encroaching on it. We predict the range-separating lines will be located as follows: 

Xn=X0 + n X (Equation 3) where N is the field’s total number of ranges. Due to the 

low dimensionality of the issue, brute force is used to perform the optimization in 

Equation (3). Equation (3) makes the assumption that the field’s ranges are separated 

by a constant distance (X). For orthophotos that are well-aligned, this assumption is 

plausible. The procedure described above is applied to each range independently after 

the field has been partitioned into ranges. Getting lines that separate each array into 

rows is the aim here. As we move forward, we only choose the area of mask that 

corresponds to each array a I (x,y)=1 if I (x,y)=1 (Equation 4)=0 else for all arrays 

a=0,..., N 2. For each array a, vertical outline is attained p (y)=I (x,y) (Equation 5) where 

the ROI’s picture rows y each have a horizontal sum. We calculate the field row 

dividing lines in each range r as Y r=Y r + m Y r (Equation 6) m is number of field 

rows. A grid of NM coordi-nates is produced by the points where the vertical and 
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horizontal lines connect. The bounding boxes are created with the help of coordinates 

across sub-row of the plant There is a chance that these bounding boxes will differ in 

dimensions. All bounding boxes are reformed to the intermediate bounding box 

magnitude while maintaining identical centroid for each bounding box in order to 

produce a collection of photos that are the same magnitude. The images in our 

collection are made up of the pixels inside these bounding boxes. 

We gathered photos on July 13, 2022, and July 21, 2022, which are two separate days. 

The photos from July 13, 2022 were obtained using the bounding box coordinates for 

July 11, 2021. By physically counting number of plants in each shot, we groundtruthed 

the dataset. The spreading of ground truth for each time is depicted in Figure 2.3. The 

other 1,240 photos are for July 11, 2021, while 1,240 are for July 3, 2021. Between 

these two periods, there is a marginal rise in the number of plants. 

 

 
 

Figure 1: Three samples of the RGB images 16 plants each with one sub-row of plants 

 

 
 

Figure 2: Cotton Crop field acquired on July 21,2022 
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Figure 3: Acquired Segment of the orthophoto on July 21, 2022 

 

 
 

Figure 4: Difference in leaf counting 
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3 Methodology 

3.1 Image Phenotyping System 

While gathering data at the plant level yields accurate information correspon-dence, the 

expert cess is time-consuming, demanding, and occasionally challeng-ing. Crops are 

densely cultivated in an outside climate. Accessing plants can be difficult and costly. 

As a result, high throughput plant phenotyping benefits less from information gathering 

per plant. For instance, UAVs have made it possible to secure aggregate information 

during current imaging stages. These steps can capture a field’s general information in 

less than an hour, but developing precise information correspondence is more difficult. 

The physical organisation of the captured images and their naming are time-consuming 

tasks. The ghostly data collected from UAV symbolisms is projected to a level surface 

with geocoordi-nates using orthorectification techniques as shown in [4]. We may 

assign each region with its pixel-level sensor information, which is used for quality 

assess-ment, using its geocoordinates. We present an RGB image based picture based 

plant phenotyping system that compiles the information correspondences and evaluates 

attributes at the plot or plant level. Additionally, this framework in-cludes a web 

interface and an adequate processing stage, making it simple for plant researchers to 

access and employ our apparatuses. Figure 3.1 depicts the Linear and Non-Linear 

Functions of Plant Pixels data generated by the UAV platform as input, and outputs the 

estimated properties for selected regions. We’ll probably add an image showing the 

number of plants. Our method dif-fers from in that we don’t take the plant into account 

when determining the class number. Last layer of a CNN typically has the same number 

of neurons as greatest number of plants in image. This a strategy solves a categorization 

issue. The cross entropy is a typical loss function in a classification task. [9, 18, 23] H 

(q,p)=p (x) logq (x) (Equation 7) where p (x) is the label and q (x) represents the 

activations at each of the final layer’s x neurons. Using one-hot encoding to set p (x), 

i.e. p (x)=1, x=ci (Equation 8) the loss function only considers one neuron where Ci is 

plant count label of ith picture (Ci-th neuron) H (q, p)=log q (Ci) (Equation 9). This 

suggests that we would ignore any persistent activation while training. P (x) can be 

understood as the degree of assurance that image goes to class x. When classes are 

independent, equations (8) and (9) apply. The modules in our dataset are not entirely 

autonomous, though. The illustration would be a picture with two plants in it. The 

difficulty to network should be significantly less if the evaluation is three than if it is 

five. Due to significant label noise in our dataset, this is even worse. When plants are 

grouped together, the label may differ significantly from the actual value by more than 

one count. 

The need to predetermine the maximum number of classes is another issue with the 

classification approach. We use the Lp norm as the loss function to be minimised in 

order to solve these issues: Lp (x, Ci)=|x Ci|p (Equation 10) where x is the projected 

number of plants. The Mean Squared Error (MSE), a standard loss function for 

regression, replaces the Lp loss at p=2. This inaccuracy can be seen as the usual mistake 

we make when estimating the plants count in an image even though p=1. 
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Figure 5: Block Diagram of Image Phenotyping System 

 

 
 

Figure 6: A high-level analysis workflow of leaf counting 

 

 

4 Experimental Results 

Here, we’ll discuss the findings of various counting task methodologies and con-trast 

them with one another. Our comparison will centre on how well various models did 

when counting on raw image, using the ground truth palms count of 15947. The amount 
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of the training dataset required to reach the desired accuracy level is another crucial 

factor to consider 

 

4.1 Regression with density maps 

Heatmap on 4.1 was produced as a result of applying the density map regression model 

to the entire image. The majority of palms had white circles on them that deep neural 

networks were trained to identify and create from obscured photos. After summarising 

the resulting heatmap, we were able to count 15784 palms with a 98.9% accuracy rate. 

Finding coordinates Blob detectors may be used to determine the coor-dinates of the 

palm centre since the mask we acquire has circles of the same hue that are easily 

distinguished from one another. We utilised "SimpleBlobDetec-tor" from Bradski, 

2000 to get the coordinates. The outcome is displayed on 4.2 

 

 
 

Figure 7: (a)Cotton HeatMap (b) stacked on top of input image 

 

 

4.1 Regression using a classifier 

When the procedure from section 4.4 was applied to the entire dataset, the result was 

20448. This gives us a 28% inaccuracy when compared to the 15947 plant instances 

that make up the ground truth value. This margin is unsatisfactory for the task of 

counting crops since it introduces a lot of uncertainty when employed in additional 

plant lifetime modelling and revenue projections. The method might be enhanced by 

expanding the training set with more data, but this task was excluded from the current 

study’s scope because one of the work’s prerequisites was a small training dataset 

 

4.2 Extracting the Foreground 

A mask with a surface area of 76023641 square pixels was produced by the foreground 

extraction technique used in the sugar beet example. We can estimate that there are 

37710 plant instances in the field based on the average plant size of 42 48 pixels. With 

the aid of agricultural professionals, further projections and estimates might be made 

using this method’s 93% accuracy. 

 

4.3 Slider window 

Since this strategy was causing several classifier activations on the palm class for a 
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single plant instance, as can be seen on 4.3, evaluation of the approach when we tried 

to classify patches was not finished. 

 

  
 

Figure 8: (a)Blob detector results (b) Sliding window iteration result 

 

 

5 Conclusion 

Employing our own collection of RGB UAV images of cotton plants, we demon-strated 

a method using CNNs to estimate the number of harvest plants in a field. We evaluated 

how well various neural networks presented themselves for the task of plant counting 

while making minor design changes. On the testing set, the Inception-v3 design had the 

smallest Mean Error. Because it produced the least amount of error in our tests, p=1 

was the reward for p in the Lp stan-dard. Future work will involve adding more data, 

using other methodologies for data augmentation, and calculating other plant 

characteristics like the number of leaves. 
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