
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 5 (2013), pp. 371-376
© International Research Publications House
http://www. irphouse.com /ijict.htm

A Holistic Qualitative Approach to Software Reliability

S. Guru Narayanan1 and Vibhore Gupta2

1Manager- R&D, Schneider Electric, Sector 126, Noida, India.
2Engineer- R&D, Schneider Electric, Sector 126, Noida, India.

Abstract

This paper discusses the reliability driven approach towards
developing software solutions and products. Requirements deficiencies
were the cause of 99% of their field reliability problems. This has been
expanded by Brendan Murphy to say that the problems on computer
systems were mostly due to requirements deficiencies and interface
weaknesses. This paper aims to provide a consolidated checklist,
methods and tools that add to strength the existing requirement
engineering process. It will facilitate to convert customer requirements
into robust product specifications and it also proposes a way of how to
deal with changing requirements. All these methods elaborate on
identifying the risks and its mitigation through standard procedures.
This paper also deals with Interface based Software Design approach
where reusability of the already tested software module can be used for
the new product or solution to reach high level reliability. The paper
throws light on redundancy based architecture to achieve high
reliability. It also describes some checklist for effective software
coding. It also discusses the various testing methods that ensure to
meet reliability objectives without compromising product features.
These procedures defines a customer oriented and holistic approach,
when adhered to, along with the usual activities of SDLC, will add
considerable value to the requirement engineering domain and ensures
that final product is engineered through proper design ,quality control
measures and software testing procedures.

Keywords: Reliability, Requirement Engineering, Reusability,
Software development process.

S. Guru Narayanan & Vibhore Gupta

372

1. Introduction
Whenever any software development model is chosen, reliability has always been of
topmost concern. The reason is simple to understand. The product needs to be able to
cope with the ever changing needs of the customer. Product needs to be versatile
enough to adapt itself to various situations and challenges. Reliability for software
systems can be defined as “Failure-free operation for a specified period of time and
under specific set of inputs”. Keeping this in mind, it is of utmost importance that
certain processes should be followed in pitch-perfect manner. Following are the
guidelines, which are divided into different phases, to illustrate the process which
enables us to move closer to reliable systems.

2. Requirement Gathering for Reliability
This is the process where maximum ambiguities are injected into the system and if
they are not addressed early, the effort required to repair them in later stages is very
cumbersome. This re-work may interfere with the timelines and with the budgeting of
the project as well. This stage deals with collecting information that are necessary for
developing the product and it is sub divided into three stages.

2.1 Analyzing the Available Data
This phase calls for a permanent co-operation between the marketing team and the
requirement gathering team to analyze the current needs and also try to anticipate the
future ones. Marketing team plays a very important role in keeping market needs up-to
date and in building trust relationship with the customers. Continuous interaction with
the marketing people also helps in coming up with the right proposal to the customer.
Analysis of the existing project in the same domain can be very useful in this context.
It will help in understanding the various challenges faced and strategies used to cope
with the changing requirements. Domain analysis will also helps in breaking complex
system into sub components and understanding their functionality. This break-up will
also help in estimating the probability of change in future. Allocating adequate budget
and making a well informed team in this phase is very important.

2.2 Requirement Gathering and Elicitation
To accomplish this task, groups must be formed to gather specific type of information.
These groups must be provided with a questionnaire that should extensively covers all
aspects of requirements. Observing every answer and reaction of the customer will
help in drilling down to his major issues and also helps in understanding his
preferences. These groups must be trained to improve their cognitive abilities and
should be taught to engage in direct and in-direct questioning. Keeping an open mind
and ability to gauge customer’s intention should be the key when interview is being
conducted. Visualization and dependency of various requirements can be easily done
by preparing pictographs and preparing dependency matrices. These requirements
should be updated in the repository for future reference.

A Holistic Qualitative Approach to Software Reliability 373

2.3 Creating Systems Specifications
Here, once the requirements are gathered, feasibility study is performed. This study
helps in realizing the feasibility of various requirements and their implementation. This
study provides a consistent method to forecast and analyze the risks involved. These
matrices should consist of priority index and gravity of the risk. These matrices will
pave the way for versioning and future testing procedures. These differentiations will
help us in building the prototypes, if necessary and identify the contingency and
mitigation plan for high risk requirements. As the requirement change, impact analysis
should be done with development time and cost point of view. It is always important to
put in place the product evolution strategy by anticipating the future needs and
enhancing the skills of the team accordingly.

3. Software Engineering Process
Choosing a proper SDLC should be based on by analyzing the requirement and the
market needs. Normally Agile process is now preferred approach for the changing
requirement and faster time to market. Nevertheless, when implementing some
standards or under known requirements, a V Model SDLC will reduce the time and
cost where verification and validation is planned concurrent for each phase. For
Mission critical and High Risk projects, Spiral model will be more suitable where
prototypes are first built by continually interacting with customers.

 Organization should have strong process like CMMI/ ISO 9001:2000/IEC 15504
in place as to convert requirement into high quality products and systems. Clear
communication should be established between stake holders and project team. Regular
meetings with Customers will reduce the risk and will help to understands
requirements in broader and end-user perspective. Resources deployed in the project
should have experience in the product development on similar fashion. Proper training
should be given on Domain Engineering and Software Technology, Process, Methods
and Tools. Use of CASE tools will help in improving the productivity, quality and
improve time to market.

4. Software Design for Reuse and Reliability
Software Design for reliability must make sure that the Systems to be built can be
broken into reusable modules or components based on the detailed Application
Domain Engineering Analysis. Even though reusable modules add more cost, payback
is compelling in the long run where by reusing validated modules into the system
reduces the software failure risks and saves the cost for future projects.

 Using COTS as a component will also be useful for faster implementation and also
reduces failure risks. APIs designed to communicate between modules should be
robust and should not change often or it will introduce more cost and bugs.
Redundancy is also to be incorporated in the Systems Design so as to improve the
availability of the systems. Proper information should be conveyed in the Failure logs

S. Guru Narayanan & Vibhore Gupta

374

for faster resolution. Design should also have proper error recovery procedures.
System Resource utilization like (CPU usage) and System Requirements like under
Normal and heavy Usage should be properly designed and communicated. Using
proven Design patterns will solve considerable design risk issues and improve
reliability.

5. Software Implementation for Reliability
All developers in the team should follow same coding standards. Secure coding is
necessary for protection from hackers .Code should comply with Cyber security
Standards. Software should be able to handle all types of valid and invalid inputs, and
have strong exception handling mechanisms for stack overflow, type checking etc.
Memory management should be carefully done. While doing multi-threaded programs
Shared objects address corruption, Dead-locks and Race-conditions should be
meticulously thought and should be eliminated. Code Review using static review tools
and Peer Review will highly useful to solve bottle necks in the programming.

6. Testing Strategy for Software Reliability
Testing is the most powerful way to improve Software Reliability. Customers and
Stake holder’s feedback should be invited during Alpha, Beta Testing. Test scenarios
should accommodate commonly used software inputs under normal and heavy load
conditions to remove errors. Unit Testing, Integration Testing, System Testing should
be extensively performed. Test Coverage with respect to requirement to be done to
find missing features. Automated Test is mandatory for Larger Software Systems
having huge test cases. Security Testing is necessary for Sensitive Information
Software Systems. Degraded Testing like Negative testing, Recovery Testing and
Destructive or Fault Injection Testing is necessary for Robust Performance. It’s to
better to have performance limits of Software defined by conducting Stress Testing
and communicate clearly to the stakeholders. Soak Testing or Endurance Testing is
crucial to understand if the system is able to tolerate Sustained load for longer
duration. Suitable Software Testing Life cycle (STLC) process is to be deployed for
easy maintenance and for change request, bug tracking and resolution.

7. Conclusion
The main purpose of this paper is to achieve reliability of highest order and strengthen
the whole process of software development by adopting various techniques and
standards. Reliability is a complex issue having many dimensions to be addressed.
This paper clearly dealt with reliability issues and how to address them in all phase of
Software Life cycle. All these techniques and methods are subjected to various goals
of the project and can be altered according to the nature of the project. These processes
when followed meticulously will certainly drive the software systems towards better

A Holistic Qualitative Approach to Software Reliability 375

reliability. Moreover, with software systems complexity evolving at exponential rates,
this strives for more reliable systems will go on uninterrupted in search of more such
models, process. Methods and tools

References

[1] Elizabeth Hull, Ken Jackson, Jeremy Dick- Requirements Engineering
[2] Ian Sommerville, Pete Sawyer - Requirements Engineering: A Good Practice

Guide.
[3] Kenny Kerr Best Practices for Writing Efficient and Reliable Code with

C++/CLI
[4] M.R.Lyu Reliability Oriented Software Engineering :Design, Testing and

Evaluation Techniques
[5] Roger S. Pressman 2005. Software engineering : a practitioner's approach

(sixth edition)

S. Guru Narayanan & Vibhore Gupta

376

