
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 625-632
© International Research Publications House
http://www. irphouse.com /ijict.htm

Software Testing through Evidence Gathering

Priyanka Mathur #1 and Swati V. Chande*2

1Department of Computer Science, The IIS University, Jaipur, INDIA

2International School of Informatics and Management, Department of Computer
Science, Jaipur, INDIA.

Abstract

An Evidence-based approach is using a best available evidence for
making a thoughtful decision about a given set of problem. Evidence-
based approach is an amalgamation of individually gained expertise
with the evidences gathered through an organized research based
approach. Its basic principles are that all practical decisions made
should 1) be based on research studies and 2) that these research
studies are selected and interpreted according to some specific norms
characteristic for Evidence Based Practice[EBP].
Many software testing techniques are proposed to test various types of
software and based upon the evidences gathered an effective testing
methodology is adopted for a software. This is evidence based
approach for software testing.
The software techniques are classified on the basis of three criteria’s a)
stepwise code reading b) performing functional testing by adopting
boundary value analysis and c) all the statements are covered using
structural testing. The study compares the strategies with respect to
fault detection effectiveness and fault detection time complexity.
In Evidence-based software engineering (EBSE), all the experiences
are properly documented in order to inform software practice adoption
decisions. In this research paper, the study factor would be the
technology of interest. The technological specifications should be very
detailed and not at a very high level of abstraction that is the software
lifecycle and all the design methods should be properly read and
documented and only then should the engineer collect evidences on it
and design the software generation model.
In this paper we analyze the gathered evidence so as to classify the
testing strategies on the basis of applicability and types of testing.

 Priyanka Mathur et al

626

Various software testing strategies were studied in which white box
testing and structural testing are the most preferred methods when
using GA (Genetic Algorithm) and SA(Simulated Annealing) as a
technique.

1. Introduction
Meeting the objective of the paper software testing techniques identified are

Fig. 1: Testing Techniques.

In accordance with the aforesaid objectives, research papers from eminent

researchers were studies and Basili (1990) suggested that for the success of a software
product software testing and fault detection activities should be exactly and adequately
understood, as they are very crucial for the success of a software product. Thus an
experimentation methodology is applied to test the software effectively. Some
common testing techniques are applied to different types of software and software
testing effectiveness is measured on the basis of several factors like:

 Testing technique
 Software type
 Fault type
 Tester experience
And an intercommunication among all these factors.
The most commonly referred software testing techniques are
 Functional testing (black box approach)
 Structural testing (white box approach)
 Code reading
 In Code reading identification of subprograms, evaluation of their functionality is

done. Further all subprograms are integrated and again their functionality is tested.

Software Testing through Evidence Gathering 627

 Bergstra (2012) suggested a new software testing strategy: Instruction Sequence
testing. In the paper the researcher compares testing from the point of view of two
different classical definitions of testing. The first definition by King (1976) says that
“in testing a small sample of data that the program is expected to handle program is
presented to the program. If the program is judged to produce correct results for the
sample it is assumed to be correct.” And the second definition as per Singh (2012) is
“Testing is the process of executing a program with the intent of finding faults”.

A comparative analysis of the first theory reflects that it’s a program working on a
machine that produces output, and there may or may not be any human intervention in
testing.

The second definition reflects that a test is successful if and only if it finds faults.
The author crafts a term Polinseq which means polyadic Instruction Sequence testing
wherein a program is tested instruction wise, marking a difference between program
testing and software testing.

The complexity of the program and program testing makes Polinseq as a good
testing technique but not a risk free technique.

Harman (2009) ET al. is of the opinion that software testing is the process to
measure the quality of developed software. Quality here encompasses completeness,
correctness, security and other non functional requirements like reliability, capability,
maintainability, efficiency, portability, compatibility and usability.

Evidence based software testing holds a good weightage in this field and more than
half the percentage papers are published regarding software testing.

Evidence based or Search based test data generation is the possible number of
inputs to the program or test cases and their fitness function. As an example taken in
this report to achieve branch coverage the fitness function accesses the closeness of
test to executing an uncovered branch; in order to find worst case execution time,
fitness is simply the duration of execution for the test case in question.

Gathering data from the research paper presented by Khan(2010) the conclusions
drawn are that:

 The main aim of testing can be quality assurance, validation and verification.
 Automated testing can be performed in well controlled softwares.
 A successful testing technique uncovers an undiscovered error.
 Generally software testing is done to affirm the quality of software by

systematically testing the software in controlled circumstances.

The testing techniques listed above are suitable for Object Oriented Paradigms.

There has been much other work on structural test data generation for the OO
paradigm. And to analyze the gathered evidence a comparative study of
objective/fitness function and problems faced in are listed in Table 1

 Priyanka Mathur et al

628

Table 1: Comparative study of objective/fitness function.

Testing

technique
Technique Description Objective

/Fitness
function

Problem faced Source

Structural
Testing

GA, SA
(Simulated
annealing)

Branch coverage,
data flow

coverage,decision-
coverage.

Maximise
path-

coverage

tended to avoid
the branches

that were hard
to cover.

Girgis,
Xiao [7]

Structural
Testing

GA Combine non-
functional testing

goals with
coverage based

adequacy criterion
as a multi

objective problem.

Maximise
branch

coverage
and

dynamic
memory

allocation

Easy to detect
faults may

become harder
to detect when
they interact

Lakhotia
[8]

White-box
testing

GA Test data
generation

Maximise
path

coverage

Manual target
paths

identification
requires tester
creativity, and

more time

Ahmed
and

Hermadi[
9]

Structural
Testing

Genetic
algorithms
(GAs) and
evolutionar
y strategies

(ESs)

Test data
generation

Maximise
coverage

one parameter
may not have

effect on
another
function

Alba and
Chicano[

10]

Unit testing GP Distance function Automatic
bug fixing

GP is
computationall

y expensive

Arcuri[1
1]

Structural
Testing

GA Test data
generation for
OO software

Maximise
data-flow

(d-u)
coverage

 Liaskos[
12]

Model Based
Testing

ACO Automatic test
sequence

generation

Maximise
all-state
coverage

and
feasibility

 Li et
al.[13]

Software Testing through Evidence Gathering 629

Mutation
Testing

Genetic
Programmi

ng

Generate and
evaluate test cases
for the mutation

testing.

Generatio
n of test

data to kill
mutants

GP is
computationall

y expensive

Emer
and

Vergilio[
14]

Temporal
Testing

Evolutiona
ry

Algorithm

Verifying
worst/best case
execution time

Optimise
worst/best

case
execution

time

EA alone is not
sufficient for a
thorough and

comprehensive
test of real–

time systems.

Pohlheim
and

Wegener
[15]

Regression
testing using

slicing

Manual Coverage-focused,
slicing

 Gupta
[16]

 Integration
testing and
software

regression at the
integration

level.

 Procedural-design
firewall

 Leung
and

White
[17]

Unit testing Data flow
coverage based

 Harrold
and

Soffa
[18]

Regression
testing

 Modification-
focused,

minimization,
branch and

bound algorithm

 Fischer ,
Hartman

and
Robson

[19]

Thus a comparative analysis of the techniques used and the testing strategies used
reflect that if more efforts are done on path coverage then White box testing can prove
to be very effective.

References

[1] V. R. Basili and R. W. Selby, "Comparing the effectiveness of software
testing strategies," IEEE Trans. Software Eng., Vol. Se-13, No. 12, December
1987.

[2] Bergstra, J.A.: About Instruction Sequence Testing. arXiv:1201.3929v1
[cs.SE], 18 Jan 2012.

[3] King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19 (7), 385–394, 1976

 Priyanka Mathur et al

630

[4] Singh, Y.: Software Testing. Cambridge University Press, Delhi, India,
(2012), ISBN 978-1-107-01296-7.

[5] Mark Harman, S. Afshin Mansouri and Yuanyuan Zhang, “Search Based
Software Engineering: A Comprehensive Analysis and Review of Trends
Techniques and Applications”. Technical Report TR-09-03, April 9, 2009

[6] Mohd. Ehmer Khan, “Different Forms of Software Testing Techniques for
Finding Errors”. IJCSI International Journal of Computer Science Issues, Vol.
7, Issue 3, No 1, May 2010

[7] Girgis, M. R. (2005). Automatic Test Data Generation for Data Flow Testing
using a Genetic Algorithm. Journal of Universal Computer Science, 11(6),
898–915. AND Xiao, M., El-Attar, M., Reformat, M., and Miller, J. (2007).
Empirical Evaluation of Optimization Algorithms when used in Goal-oriented
Automated Test Data Generation Techniques. Empirical Software
Engineering, 12(2), 183–239.

[8] Harman, M., Lakhotia, K., and McMinn, P. (2007a). A Multi-Objective
Approach to Search-based Test Data Generation. In Proceedings of the 9th
annual Conference on Genetic and Evolutionary Computation (GECCO ’07),
pages 1098–1105, London, England. ACM.

[9] Ahmed, M. A. and Hermadi, I. (2008). GA-based Multiple Paths Test Data
Generator. Computers & Operations Research, 35(10), 3107–3124.

[10] Alba, E. and Chicano, F. (2008). Observations in using Parallel and Sequential
Evolutionary Algorithms for Automatic Software Testing. Computers &
Operations Research, 35(10), 3161–3183.

[11] Arcuri, A. (2008). On the Automation of Fixing Software Bugs. In
Proceedings of the Doctoral Symposium of the IEEE International Conference
on Software Engineering (ICSE ’08), pages 1003–1006, Leipzig, Germany.
ACM.

[12] Liaskos, K., Roper, M., and Wood, M. (2007). Investigating Data-Flow
Coverage of Classes Using Evolutionary Algorithms. In Proceedings of the
9th annual Conference on Genetic and Evolutionary Computation (GECCO
’07), 70 pages 1140–1140, London, England. ACM.

[13] Li, H. and Lam, C. P. (2005a). An Ant Colony Optimization Approach to Test
Sequence Generation for Statebased Software Testing. In Proceedings of the
5th International Conference on Quality Software (QSIC ’05), pages 255–264,
Melbourne, Australia. IEEE Computer Society.

[14] Emer, M. C. F. P. and Vergilio, S. R. (2002). GPTesT: A Testing Tool Based
On Genetic Programming. Proceedings of the 2002 Conference on Genetic
and Evolutionary Computation (GECCO ’02), pages 1343–1350, New York,
USA. Morgan Kaufmann Publishers.

Software Testing through Evidence Gathering 631

[15] Pohlheim, H. and Wegener, J. (1999). Testing the Temporal Behavior of Real-
Time Software Modules using Extended Evolutionary Algorithms.
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’99), volume 2,page 1795, Orlando, Florida, USA. Morgan
Kaufmann.

[16] Gupta, R., Harrold, M.J., and Soffa, M.L. 1992. An approach to regression
testing using slicing. In Conference on Software Maintenance 1992
(Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 299-308.

[17] Leung, H.K.N. and White, L. 1990. A study of integration testing and
software regression at the integration level. In Proceedings. Conference on
Software Maintenance 1990 (Cat.No.90CH2921-5). IEEE Comput. Soc. Press,
290-301.

[18] Harrold, M.J. and Souffa, M.L. 1988. An incremental approach to unit testing
during maintenance. In Proceedings of the Conference on Software
Maintenance - 1988 (IEEE Cat. No. 88CH2615-3). IEEE Comput. Soc. Press,
362-7.

[19] Hartmann, J. and Robson, D.J. 1990. Techniques for selective revalidation.
IEEE Software.7(1),31-6.

 Priyanka Mathur et al

632

