
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 5 (2013), pp. 391-398
© International Research Publications House
http://www. irphouse.com /ijict.htm

Securing PHP Based Web Application Using
Vulnerability Injection

#1Jamang Jayeshbha Bhalabha, #2Amit Doegar and #3 Poonam Saini

#1,2National Institute of Technical Teachers Training and Research, Chandigarh.
#3PEC University of Technology, Chandigarh.

Abstract

In the past few years, Vulnerability injection technique has been given
relatively lesser attention by the research community. The probable
reason might be positioned in its objective which is apparently contrary
to the purpose of making applications more secure. However, the same
technique can be used in various research applications such as the
automatic creation of vulnerable code for the purpose of educational
application, systems requiring in-depth testing and evaluation of both
vulnerability scanners and security teams. In the contemporary
literature, a handful of work exists for securing PHP based web
applications using vulnerability injection. Most of the protocols exploit
the vulnerability detection rather than vulnerability injection which is a
major drawback for the design of real- time and secure applications.
Moreover, the existing protocols employ single type of vulnerability
which limits its practical usage. Also, the dynamic nature of PHP
makes the design of secure PHP based applications more challenging.
In the light of above said limitations, we propose to design a prototype
which targets PHP based web applications. Further, the prototype is
injected with taint- style vulnerabilities i.e., Sql injection, cross-site
scripting etc. The thesis would exploit vulnerabilities present in the
latest versions of well known PHP applications. This, in turn, would
provide a better insight into the most common type of vulnerabilities.

Index Terms: Vulnerabilities, Injection, PHP, Static analysis.

Jamang Jayeshbha Bhalabha et al

392

1. Introduction
Web applications in particular are being used today as front ends to many security
critical systems (e.g., home banking and e-commerce), but due to their high exposure,
they are particularly susceptible to being heavily attacked. This means that they require
special care to make them secure and resilient against these threats.In a world growing
every day more dependent on computer systems, we are slowly becoming aware of the
need for security in applications to prevent attacks that could result in the loss of
material, money or even human lives. Security teams and vulnerability scanners are
some of the approaches used to eliminate the flaws that weaken the applications, the
vulnerabilities. However, without a systematic way of evaluating them, it is difficult to
choose the right security tool for the job, or find out what knowledge the security team
is lacking. Evaluating vulnerability scanners might be done by comparing the results
from each other, to see which tool finds more vulnerabilities with less false positives.
This however only gives a result relative to the other vulnerability scanners, meaning
that if all vulnerability scanners are bad the this method will not produce meaningful
results. Evaluating a security team is even harder since most companies do not have
the resources required to employ more than one security team, and even if they have,
they probably would not want to have them doing the same work just for the sake of
comparing the results.The best way to evaluate both security teams and vulnerability
scanners is to have them work over an application whose vulnerabilities are already
known, in order to be able to check not only which types of vulnerabilities they find
best but also which ones they failed to find at all. While this can be done by using
some older version of an application, with some known vulnerabilities, finding a
version that has just the right vulnerabilities for the evaluation might be very difficult.
Therefore, a method is necessary to give to the evaluator the control over which
vulnerabilities are inserted in the test application, to ensure that the evaluations are
effective and efficient. A vulnerability injection tool can also be used to estimate the
number of vulnerabilities that are left to correct in an application after it has already
been tested [1]

2. Literature Survey
There is not much work on vulnerability injection in our current day. The reasons for
this might have to do with the fact that it looks counterproductive to the end goal of
making software more secure and also that it is as hard (if not harder) as the opposite
problem of detecting vulnerabilities. This might explain why only one team, Fonseca
has focused on this exact problem .Fonseca builds upon this concept in two different
works: in [5] they present the concept and delve deeper into it in [6]. They implement
the concept by building a vulnerability injection tool for PHP that injects SQL
Injection vulnerabilities. Fault injection has been used since the 1970s [7] to test the
dependability of fault tolerant systems. By injecting faults into specific components of
a system it was possible to verify whether the system could tolerate faults in those
components, and it was also possible to learn the impact of the eventual failures. The

Securing PHP Based Web Application Using Vulnerability Injection 393

first approach for fault injection was to inject faults directly in the hardware. These
were used mostly to test the tolerance of the hardware to occasional failures and to
evaluate the dependability of systems where high time resolution is required. Static
Analysis is a form of analysis of computer software where the code is analyzed
without being executed. It can be used to gather a lot of information about the code,
from defects or bugs, unreachable code and unused variables, whether it adheres to
good programming practices, software metrics, and can even be used to formally prove
whether the application has some given properties. While it can also be applied on
binary code, it is most commonly applied to source code. In fact, compilers use it to do
their job and thus are a good model to verify what and how is static analysis done [8].
Compilers are usually composed of three main components: the front end where source
code is parsed, its syntax and semantics is validated and is transformed into an
intermediate representation ready for further analysis; the middle end where the code is
subject to static analysis in order to be optimized and the back end where the code will
be finally translated into the output language. Static analysis tools typically have a
similar work flow to the front and middle end except for the optimization part which is
where tools diverge according to their purpose, and thus these two components are
worth a deeper look at. While the purpose of vulnerability detection is the complete
opposite of what this work tries to achieve, tools that try to detect vulnerabilities
statically have many characteristics in common with a potential vulnerability injection
tool, mainly related to the static analysis that it needs to perform and to the
vulnerability modeling that is required both to detect vulnerabilities or to detect
potential injection locations. It is thus interesting to analyze tools that perform
vulnerability detection on PHP.RIPS [13] is written in PHP and thus requires setting
up a local web server in order to use it. Once that step is done it can be controlled
completely using a practical web interface that allows scanning files for vulnerabilities
while customizing the verbosity level, the vulnerabilities to analyze, and even the code
style in which results are presented. Pixy is written in Java and is a command line
application that can detect Cross-site Scripting and SQL Injection vulnerabilities using
taint analysis, which makes it both less user-friendly and less complete than RIPS. It is
run by specifying one file where vulnerabilities will be searched, which is then
presented in a summary in the terminal. Alternatively, a DOT file can be produced,
which can be visualized using the dot application from Graphviz [14] that represents
the taint path that causes the vulnerability.

3. Proposed Prototype
The modifications made to Rips were the ones marked in red in Figure.1 The addition
of a injectVulns() method in the DepClients and of a Vulnerability Injector module
were required in order to transform it into a Vulnerability Injection Tool. The rest of
the modifications were made in order to allow for the Vulnerability Injection Tool to
be able to inject and detect some more vulnerability.

Jamang Jayeshbha Bhalabha et al

394

Fig. 1: Rips Plus Modification for Injection Tool.

4. Evalution
The prototype will be evaluated with some web applications in order to measure its
efficiency. The four applications are a guestbook script called Talkback [17], a web
chat server named Voc [18], a document management system called yaDMS [19], and
RIPS [20], the vulnerability scanner that contributed to the model and sink files of the
prototype. The selection of these applications was based in three requirements that had
to be satisfied. The first was that the prototype had to be able to parse the application
files, which was not always true because the original Pixy could not parse PHP5
applications, and thus neither could the prototype. The second is the equivalent for
RIPS, i.e., RIPS had to be able to parse the application files too. This was required
because RIPS was to be used to cross-check the results of the injections. The third
requirement was that the applications were easy to run and test, which was required to
verify whether the injections affected the apparent behavior of the application or not.

Securing PHP Based Web Application Using Vulnerability Injection 395

Experimental Results

Table 1: Output Data.

5. Conclusion
The work focus on the detection of various vulnerabilities while injecting the same
through a prototype design. Vulnerability injection tool is capable of inserting realistic
and attackable vulnerabilities into php based web applications. Further, the prototype is
injected with taint-style vulnerabilities i.e., Sql injection, cross-site scripting etc. The
vulnerabilities present in the latest versions of well known php applications would be
studied and analyzed. A handful of work exists for securing php based web
applications using vulnerability injection. Most of the protocols exploit the
vulnerability detection rather than vulnerability injection which is a major drawback
for the design of real- time and secure applications. Moreover, the existing protocols
employ single type of vulnerability which limits its practical usage. Also, the

Jamang Jayeshbha Bhalabha et al

396

dynamic nature of PHP makes the design of secure php based applications more
challenging. In the thesis, we proposed to design a prototype which targets PHP based
web applications. This technique can be used in various research applications such as
the automatic creation of vulnerable code for the purpose of educational application,
systems requiring in-depth testing and evaluation of both vulnerability scanners and
security teams.

References

[1] McConnell S., (1997), “Gauging software readiness with defect tracking”,
IEEE Journal of Software Engineering, pp. 136–135.

[2] Web Goat. URL: https://www.owasp.org/index.php/
ategory:OWASP_WebGoat_Project

[3] Biggar P. and Gregg D.(2009) “Static Analysis of Dynamic Scripting
Languages”, Informatics, pp. 56-60.

[4] Usage of server-side programming languages for websites. Feb. 2011. URL:
http://w3techs.com/ technologies/overview/programming_language/all.

[5] Fonseca J., Vieira M. and Madeira H. (2008), “Training Security Assurance
Teams using Vulnerability Injection”, 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 297–304.

[6] Fonseca J., Vieira M. and Madeira H.(2009), “Vulnerability & attack injection
for web applications”, IEEE/IFIP International Conference, pp. 93–102.

[7] Carreira J.V., Costa D. and Silva J.G.(1999),“Fault injection spot-checks
computer system dependability”, pp. 50 –55.

[8] http://en.wikipedia.org/wiki/Compiling
[9] Chomsky N.(1956), “Three models for the description of language”, pp. 113–

124.
[10] Etienne Kneuss.(2010), “Static Analysis for the PHP Language”, Informatics,

pp. 122-126.
[11] Jovanovic N., Kruegel C. and Kirda E.(2006), “Precise alias analysis for static

detection of web application vulnerabilities”,pp. 27–36. ISBN: 1595933743.
[12] Xie Y. and Aiken A.(2006), “Static detection of security vulnerabilities in

scripting languages”, 15th USENIX Security Symposium. 2006, pp. 179–192.
[13] Dahse J.(2010), “RIPS - A static source code analyzer for vulnerabilities in

PHP scripts”.
[14] Graphviz(2001), “Graph Visualization Software”. URL:

http://www.graphviz.org/. Computing, vol. 61 (6), pp. 810-837.
[15] Alfred V. Aho, Ravi Sethi and Jeffrey D.,(1986), “Ullman. Compilers:

principles, techniques, and tools”. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., ISBN: 0-201-10088-6.

[16] Kirda E.,(2007), “A static analysis tool for detecting web application
vulnerabilities”, IEEE Symposium, pp. 6–263.

Securing PHP Based Web Application Using Vulnerability Injection 397

[17] http://www.calllimit.com/
[18] http://reinsteinross.com/.
[19] http://en.wikipedia.org/wiki/Compiling
[20] Chomsky N.(1956), “Three models for the description of language”, pp. 113–

124.
[21] Etienne Kneuss.(2010), “Static Analysis for the PHP Language”, Informatics,

pp. 122-126.
[22] Jovanovic N., Kruegel C. and Kirda E.(2006), “Precise alias analysis for static

detection of web application vulnerabilities”,pp. 27–36. ISBN: 1595933743.

Jamang Jayeshbha Bhalabha et al

398

