
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 939-946
© International Research Publications House
http://www. irphouse.com /ijict.htm

Performance Analysis of Selective Acknowledgement with
Fractional Window Increment (SACK-FeW)

Taranvir Kaur

CSE/IT, CTIEMT, CT Institutes, Shahpur, Jalandhar, India.

Abstract

In this work we investigated the effect of congestion over the average
throughput, average packet loss, average packet retransmission and
average energy consumption of the various nodes of the 802.11 ad hoc
networks. Due to lack of coordination and sharing in these networks a
number of problems has been encountered. One among the various
problems that lowers the performance of ad hoc networks is the
window mechanism of Transmission Control Protocol (TCP). To
handle this problem TCP with fractional window (FeW) mechanism
has been proposed earlier that has given very good results as compared
to original TCP. Here in our work we implemented the same
mechanism with another variant of TCP known as TCP with selective
acknowledgement (TCP-SACK) and named the modified version as
SACK-FeW. Our simulation results have shown that the proposed
scheme improves SACK’s performance in 802.11 adhoc networks.

Keywords: TCP, Ad Hoc networks, congestion, disconnections, Ack,
SACK, Newreno, lite, DYMO, LANMAR, OLSRv2.

1. Introduction
In Ad hoc networks[1] the nodes move independent of each other and are not
dependent on any centralized authority due to this reason there is lack of coordination
in these nodes that causes overreaction of routing protocol due to TCP[2]. One among
the several sources that affects the quality of end to end connection is in the window
size measuring mechanism of TCP. In order to address this problem fractional window
mechanism in TCP is implemented earlier that lowers the over reaction of TCP on
reactive routing protocol[3] and limits the TCP’s aggressiveness.

Taranvir Kaur

940

In wireless Ad hoc networks various available resources are shared by all the nodes
present in the network. Due to its nature TCP tries to maximize the usage of available
natural resources and leaves little resources for the lower layer usage, the lack of
available resources for lower layers affects the quality of the end to end connections
and lowers the TCP performance. By using TCP with fractional window increment it
has been proved experimentally that simply by reducing the network overload the
overall performance of TCP and reactive routing protocol can be improved[4][5].

Network overload is a major factor causing packet loss packet loss, packet loss
increases with increase in network load, analysis in [6][7][8][9] has proved that that it
is the growth rate of the TCP congestion window that effectively controls the loss rate
and, consequently, the network overload.

To keep the network load at a reasonable level, a fractional window increment
scheme, called FeW has been proposed, that allows a fractional increment of the TCP
congestion window. The FeW scheme can be validated mathematically by the well-
known TCP-friendly equation[1]. If we modify the window increment scheme it will
shift the TCP operation to a new range of applications that can give better results with
lesser available bandwidth. It has been proved by using simulations that TCP-FeW
dramatically improved the transport layer performance in 802.11 multihop networks.

In our study we have used this fractional window mechanism with another TCP
variant known as TCP-Selective Acknowledgement (SACK)[9][11] and named this
new variant as SACK-FeW.

Traditional TCP makes use of cumulative acknowledgement scheme[2]. In this
scheme those received segments are not acknowledged that are on the left side of the
received window due to which the sender is forced to either wait for a round trip time
to get knowledge about each lost packet or the sender unnecessarily retransmits
segments. Multiple dropped segments in cumulative acknowledgement scheme leads
to loss of acknowledgement based clock in TCP reducing overall throughput and
SACK (selective acknowledgement) is the solution to this problem. SACK is a
technique in which the receiver informs the sender about all the segments that has been
received successfully, so the sender needs to retransmit only those segments that has
been received successfully, so the sender needs to retransmit only those segments
whose acknowledgements has not yet been received or that are actually lost. After
retransmitting these lost packets the sender updates the size of the congestion window
either by one maximum segment size or if the size of congestion window is greater
than slow start threshold then by-:

Here, Increment = maximum segment size[1]
Here instead of using these mechanisms for updating the size of the congestion

window we made use of fractional window update mechanism by using same formula
for updating the window in both the cases i.e when the congestion window is less as
well as greater than the slow start threshold. It has been seen via simulations that

Performance Analysis of Selective Acknowledgement with Fractional Window 941

SACK-FeW gives higher throughput, lesser loss and lesser retransmission with nearly
similar energy consumption.

Rest of the paper consists of three sections 2, 3 and 4. In section 2 formula used to
calculate the size of the congestion window and algorithm demonstrating the use of the
formula are discussed, The methodology adopted and the performance of the proposed
scheme are discussed in section 3 and the concluding remarks and future scope are
given in section 4.

2. Function Used and Algorithm
2.1 SACK – Fractional Window Increment Function
SACK – FeW allows the TCP congestion window to grow by a fractional rate instead
of growing by a fixed value always. The congestion window in SACK - FeW grows by
a fractional rate α (packets) after retransmitting the packets. The value of α can vary
from 0 to 1 mathematically it can be expressed as 0 ≤ α ≤ 1. The formula used is given
below [5]-:

Here, is the new size of congestion window

 is the current size of congestion window
α is a constant such that 0 ≤ α ≤ 1

2.2 SACK - Fractional Window Increment Algorithm
The modified algorithm of TCP – SACK with fractional window increment is as
shown below-:

// cwnd new is the size of congestion window after increment.
// cwnd current is the size of the congestion window before increment.
// α is any constant such that 0 ≤ α ≤ 1.
// Increment is inversely proportional to current size of congestion window and

depends upon the value of α.
// ssthresh is the slow start threshold value
1. Initialize α = 0.01
2. Initialize Increment = α / cwnd current
3. On receiving selective acknowledgements from the receiver if loss of packets

have taken place then retransmit the packets
4. Set cwnd current = minimum(cwnd current, ssthresh)
5. cwnd new = cwnd current + Increment

3. Results and Analysis
3.1 Methodology
The performance of modified variant was evaluated via simulations. The simulation
was carried on Qualnet Network Simulator version 5.0 developed by Scalable Network

Taranvir Kaur

942

Technologies. The main interest of the project was to test the performance of SACK-
FeW over DYMO[8] and compare it with SACK over DYMO with changing network
topology. Furthermore the focus was set on varying number of nodes and area sizes.
We experimented with 300 seconds of simulated time over a square field for each
scenario. The various modified parameters are shown in Table 1.

Table 1: Parameters Used for Analysis.

Parameters Values
TCP Variants
Routing Protocols
Fading Model
Shadowing Model
Pathloss Model
Energy Model
Battery Model
Mobility Model
Mobility Speed
Network Size- 10 nodes
Network size- 20 nodes
Network Size- 50 nodes
Network size- 100 nodes
Network Size- 200 nodes
Node Placement

SACK, SACK-FeW
DYMO
Rayleigh
Constant
Two-Ray
Mica Motes
Simple linear
Random Waypoint
2 to 10 meter/sec
Area Considered- 500 X 500
Area Considered- 700 X 700
Area Considered- 1000 X 1000
Area Considered- 1500 X 1500
Area Considered- 2000 X 2000
Random node placement under seed-1

3.2 Performance Analysis
Four parameters namely average throughput, percentage of average packet loss,
percentage of average packet retransmission and average energy consumption were
used to analyse the performance of SACK-FeW and compare it with the performance
of SACK over same scenarios. The results are as shown below-:

3.2.1 Average Throughput-: In communication networks throughput is the rate of
successful message delivery over a communication channel. It can be seen in the Table
2 that as the number of nodes are increasing the throughput in both the cases that is in
SACK as well as SACK-FeW is decreasing this is because of the reason that as the
number of nodes are increasing the amount of data to be transmitted is increasing
leading to increase in the amount of network load leading to decrease in throughput.
Table 1 clearly shows that as the number of nodes are increasing SACK-FeW is giving
higher throughput as compared to SACK.

Performance Analysis of Selective Acknowledgement with Fractional Window 943

Table 2: Average Throughput for SACK and SACK-FeW.

Average Throughput(bits/sec)
Number of Nodes SACK SACK-FeW
10 169467.5 167358.5
20 51384.75 50651.5
50 22783 28890.7
100 15782.45 16428.72
200 2714.658 4314.042

3.2.2 Percentage of Average Packet Loss-: Transport layer divides the data into

small packets and sender sends these packets to the destination via physical channel
due to certain problems in these physical channels, congestion or due to other
constraints loss of these packet may take place. It can be seen in the Table 3 that as the
number of nodes are increasing the percentage of average packet loss is increasing this
is because of the reason that as the number of nodes are increasing the network faces
more load due to which more loss of packets takes place. Table clearly depicts that on
an average percentage of average packet loss is less in case of SACK-FeW as
compared to SACK.

Table 3: Percentage of Average Packet Loss for SACK and SACK-FeW.

Percentage of Average Packet Loss (%)
Number of Nodes SACK SACK-FeW
10 0.09 0.074
20 0.94 1.048
50 1.53 1.4
100 1.64 1.48
200 3.97 2.77

3.3.3 Percentage of Average Packet Retransmission-: Whenever loss of packets

takes place the the receiver on not receiving the packets start sending the old
acknowledgements i.e already sent acknowledgements again and again which belongs
to the last successfully received packets and these acknowledgements are termed as
duplicate acknowledgements whenever the sender receives the duplicate
acknowledgements it retransmits the lost packets by sending the packet with next
sequence number next to the sequence number present in the duplicate
acknowledgement. Table 3 depicts the percentage of average packet loss, as the
number of nodes are increasing the percentage of average packet retransmission is
increasing this is because due to increase in number of nodes the amount of data
present in the network that needs to be transferred from one node to another increases
and hence overloads the network due to which more loss takes place that leads to more

Taranvir Kaur

944

packet retransmission. And also it can be seen in the Table 4 that by using SACK-FeW
the percentage of average packet retransmission has been decreased in certain cases
like with 10 and 200 nodes as compare to SACK.

Table 4: Percentage of Average Packet Retransmission for SACK and SACK-FeW.

Percentage of Average Packet Retransmission(%)
Number of Nodes SACK SACK-FeW
10 0.028 0.0128
20 1.4075 1.43
50 2.43 2.57
100 2.72 2.98
200 4.94 4.28

3.3.4 Energy Consumption-: Here energy consumption is the measure of the

average energy consumed in transmitting and receiving the packets. Table 5 shows the
average energy consumption by varying the number of nodes. As the number of nodes
are increasing the average energy consumption is decreasing and also the values of
average energy consumption are same in the case of 10, 100 and 200 nodes. With 20
nodes SACK-FeW is giving better performance and with 50 node SACK is giving
better performance.

Table 5: Average Energy Consumption for SACK and SACK-FeW.

Average Energy Consumption (mJ)
Number of Nodes SACK SACK-FeW
10 3.16 3.16
20 2.71 2.68
50 2.41 2.43
100 2.26 2.26
200 2.1 2.1

4. Conclusions
In this work we analysed the performance of SACK-FeW. All the results were
abtained via simulations. The various contributions of this work include-:

 Setting up the various scenarios for simulation.
 Modifying the existing TCP variant SACK to SACK-FeW.
 Evaluating the proposed scheme over five different scenarios.

Performance Analysis of Selective Acknowledgement with Fractional Window 945

 Comparing the performance of proposed algorithm with the already existing
variant (SACK).

Even though 802.11 multihop networks impose many technical challenges on TCP,
it can be concluded from the current study that the TCP window mechanism actually
provides a good solution to 802.11 networks with a proper value of α.

References

[1] Ahmed Helmy, C.-C.Jay Kuo, Kitae Nahm, "TCP over multihop 802.11
networks: issues and performance enhancement," in Proceedings of ACM
MobiHoc, Urbana-Champaign, IL, May 2005.

[2] J.Postel, “Transmission Control Protocol”, RFC 793, 1981.
[3] B.S. Manoj and C. Siva Ram Murthy, “Ad Hoc Wireless Networks”, Pearson

Education, 2005.
[4] Bhaskar Sardar and Debashis Saha, “A Survey of TCP Enhancements for Last-

Hop Wireless Networks”, IEEE, Communications Surveys & Tutorials, 3rd
Quarter 2006, Vol 8, Issue. 3, pp-20-34.

[5] Xinbing Wang , Yun Han and Youyun Xu, “APS-FeW: Improving TCP
throughput over multihop adhoc networks”, Computer Communications,
Elsevier, September 11 2008, pp-19-24.

[6] Dan Keun Sung, Nana Li, Wenbo Zhu, and Xinming Zhang, “TCP
Transmission Rate Control Mechanism Based on Channel Utilization and
Contention Ratio in Ad hoc Networks” , IEEE Communication Letters, APRIL
2009, VOL. 13, NO. 4.

[7] C. Siva Ram Murthy and Venkataramana Badarla, “Learning-TCP: A
stochastic approach for efficient update in TCP congestion window in ad hoc
wireless networks”, Journals Parallel and Distributed Computing, Elsevier,
January 20 2011, pp- 863–878.

[8] Tilman Wolf, Weibo Gong and Yan Cai, “Delaying Transmissions in Data
Communication Networks to Improve Transport-Layer Performance”, IEEE
Journal on Selected Area in Communications, MAY 2011 , VOL. 29, NO. 5.

[9] A. Romanow, J. Mahdavi, M. Mathis and S. Floyd , “TCP Selective
Acknowledgment Options”, RFC 2018, October 1996.

[10] C. Perkins and I. Chakeres, “Dynamic MANET On-demand (AODVv2)
Routing”, March 12, 2012.

[11] Mandakini Tayade and Sanjeev Sharma, “Review of Different TCP Variants in
Ad- Hoc Networks”, International Journal of Engineering Science and
Technology, March 2011, Vol. 3, Issue. 3, pp-1906-1913.

Taranvir Kaur

946

