
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 8 (2013), pp. 825-832
© International Research Publications House
http://www. irphouse.com /ijict.htm

Testing Target Path by Automatic Generation of
Test Data Using Genetic Algorithm

Shveta Parnami

The IIS University, Jaipur, Rajasthan.

Abstract

Software testing is the most important component of software
development process. Path testing is a popular structural testing
method that uses the source code of a program to find every possible
executable path. The adequate and accurate test data are required to
test each path. Test data generation is a key problem in software testing
and its automation will improve the efficiency and effectiveness of
software testing. Different test data generation methods like random
test data generator, symbolic evaluator, function minimization method
and metaheuristic search methods had been proposed in the literature.
The paper explores the Genetic Algorithm approach to generate
adequate and accurate test data for a target path. Genetic Algorithm is
an adaptive heuristic search algorithm that premise on the evolutionary
ideas of natural selection and genetic. The approach first converts the
program into its corresponding Control Flow Graph, and then
automatically generates the test data for the target path using different
sets of GA operators. The paper also compares and demonstrates the
effect on generated test data by changing the type of GA operator like
crossover, by varying population size.

Keywords: Path Testing, Target Path, Genetic Algorithm, Automatic
Test Data Generation.

1. Introduction
Path testing is a structural testing method that finds every possible executable path
from the source code of a program. The method ensures that every path through a
program has been executed at least once. One of the major difficulties in the
automation of software testing is automatic generation of adequate set of test data that
satisfies the complete path coverage of a given program. Test-data generation is a

Shveta Parnami 826

process of identifying a set of program input data, which satisfies a given testing
criterion. Since it is impossible to cover all paths in software, the path testing method
selects a subset of paths to execute and find test data to cover it. Many attempts were
made to automate the test data generation process for path testing and suffered many
limitations as the test data generation process is extensive and difficult process.

 Many different test data generation methods like random test data generator,
symbolic evaluator, function minimization method and metaheuristic search methods
have been proposed in the literature. The paper focuses on the Genetic Algorithm
approach which is an adaptive heuristic search algorithm that premise on the
evolutionary ideas of natural selection and genetic, to automate test data generation for
a target path. The related literature suggested that genetic encoding techniques and
genetic operators have very important influence on the automatic generation of test
data. This paper presents the utility and implementation of GA to automatically
generate the test data to ensure the complete coverage of the target path.

This paper is organized as follows: Section II gives a backdrop of genetic
algorithms. Section III gives a review of the related test-data generation techniques,
especially techniques based on genetic algorithms. Section IV presents the
methodology for test-data generation based on genetic algorithms. Section V describes
the experimental set up for the given approach. Section VI presents the results and the
discussions. Section VII presents the conclusions.

2. Genetic Algorithm
A Genetic Algorithm is a global search heuristics technique used in computing to find
true or approximate solutions to optimization and search problems. The Genetic
Algorithm concept is easy to understand; modular based and supports multi-objective
optimization. Genetic algorithms are evolutionary algorithms that use techniques
inspired by evolutionary biology such as inheritance, mutation, selection, and
crossover (also called recombination). A genetic algorithm maintains a population of
candidate solutions for the problem at hand, and makes it evolve by iteratively
applying a set of stochastic operators which are selection, recombination and mutation.
Selection replicates the most successful solutions found in a population at a rate
proportional to their relative quality, Recombination decomposes two distinct solutions
and then randomly mixes their parts to form novel solutions and Mutation randomly
perturbs a candidate solution.

3. Simple Genetic Algorithm
Produce an initial population of individuals evaluate the fitness of all individuals while
{termination condition not met} do

 Select fitter individuals for reproduction
 Recombine between individuals
 Mutate individuals
 Evaluate the fitness of the modified individuals

Testing Target Path by Automatic Generation of Test Data Using Genetic 827

 Generate a new population
 End while

4. Application of Genetic Algorithm to Automate Test Data
Generation

The various research works carried out in the field of test data generation, different
researchers have used different coverage criteria while automating the test data
generation. Genetic Algorithm approach is proposed by Michael et. al. (2001) for
automated test data generation using branch coverage. Sthamer (1996) focused on
generating test data by using several, structural test coverage using genetic algorithms.
They identified all the test data generation technique focus on multiple test criteria
instead of single test criteria. Duran et.al.(1984) generated the software test data using
random testing technique using various coverage criteria such as segment coverage,
branch coverage, and path coverage. Srivastava and Kim(2009) had worked on control
flow graph (CFG) to ensure that all the independent paths for path coverage are moved
along at least edge that has not been traversed before the path is defined. They have
demonstrated that Genetic Algorithm technique finds the most critical paths for
improving software testing efficiency. Genetic algorithm automatically generates test
cases to test selected path by taking it as a target and executes sequences of operators
iteratively for test cases to evolve. The evolved test case then leads the program
execution to achieve the target path as shown by Nirpal and Kale (2010). The fitness
function proposed by authors achieves path coverage that incorporates path traversal
techniques, neighborhood influence, weighting, and normalization. Euclidean distance
is used by Korel (1990) to quantify the distance between two paths of the control flow
graph. Clake (1976) generated the software test data by using path coverage testing
criteria. They selected target path, execute the path symbolically, identify constraints,
and then generated the test case values such that the identified constraints are satisfied.
Mansour and Salame (2004) and Lin and Yeh (2001) discussed about automatic test
data generation using path testing criteria and genetic algorithms. Mansour and Salame
(2004) used hamming distance as a fitness function operator in Genetic Algorithm.
Ahmed and Hermadi (2007) attempted to generate test data for multiple paths using
genetic algorithm. Ghiduk et. al. (2007) proposed an approach to generate test data
using du (definition use) paths coverage. They focused upon generating the dominance
tree from the control flow graph of the program. Gursaran (2012) employed the path
prefix strategy as a branch ordering strategy and memory and elitism in addition to the
usual genetic algorithm operators for test data generation for branch testing. Shen et.
al. (2007) proposed the hybrid scheme of genetic algorithm and tabu search that came
to known as GATS algorithm using function coverage as testing criteria.

Referring to the above mentioned related works it is observed that various
operators of GA have been applied to automate the test data generation for different
testing coverage criteria. The researchers are aiming to minimize the effort of
generating the test data by using various GA operators on different coverage criteria.

Shveta Parnami 828

5. Methodology
The paper proposes a Genetic Algorithm based method which automatically generates
the test data for the target path of a program. The method consist the following steps:

1. Structuring Control Flow Graph: The program is transformed into the CFG.
Each node in CFG represents a unique character so that every path can be
represented by a string.

2. Identification of Target Path: A CFG has 2n paths where n is number of
branches. Traversing each path may be very time consuming therefore it is
required to select a meaningful paths as target paths.

3. Selection of Appropriate GA Operators: The GA operators are Selection,
Fitness Function, Crossover, Mutation and Reinsertion. Each of these operators
plays important role in generation of test data.

4. Automatic Generation of Test Data: GA based tester automatically and
regularly generates new test data to monitor whether the target paths are
covered or not and accordingly update GA parameters to lead new population
to traverse uncovered paths. Original test data are chosen from their domain at
random and GA generates new test data in order to achieve the target path.

5. Satisfaction of the tester algorithm: A suitable test data that executes along the
target paths are generated or no suitable test data may be found because of
exceeding max generation.

It is difficult to generate the test data for every path therefore a target path is
selected which is rarest of all. The proposed approach generates the test data
automatically for the given target path to ensure the complete coverage. This target
path is given to GA as an input and the test data are generated using different set of
operators of GA. The approach also compares and shows how the change in GA
operators affects the test data generation keeping the rest environment alike.

6. Experimental Set Up
The experiment on triangle classifier procedure is conducted in order to investigate the
effectiveness of using GA for path testing. The paper follows two experiments. In first
experiment the test data is generated by varying the population size from 20 to 100. In
the second experiment the crossover operator is changed form one-point crossover
method to two-point crossover method for population size ranging from 20 to 100. The
fitness function is designed by computing approximation level between target path and
execution path through comparing with the same path nodes the data traversing. The
experiment compares the target path with the actual traversed path. The deviation
degree of the paths that traversed by test data x and the target paths are measured. The
higher fitness value to the individual are set if there are more nodes or edges same in
sequence before the deviation. The triangle classifier procedure and its corresponding
CFG are as follows. The nodes of the CFG are represented by the statements in the
triangle classifier procedure.

Testing Target Path by Automatic Generation of Test Data Using Genetic 829

Program Under Test Control Flow Graph
1 If ((A+B<C)||(B+C<A)||(A+C<B)) then
2 “Not A Triangle”
3 else if((A= =B)&&(B= =C)
4 “ Equilateral Triangle ”
5 else if((A= =B)||(B= =C)||(A= = C))
6 “ Isosceles Triangle ”
 else
7 “ Scalene Triangle ”

Parameter Settings: SURVIVE_RATE: 0.5, CROSSOVER_RATE: 0.9,

MUTATION_RATE: 0.01, POP_SIZE: 20-100, CHROMO_LENGTH: 15,
GENE_LENGTH: 5, MAX_ALLOWABLE_GENERATIONS: 50

7. Results
Experiment 1: The test data for the target path <134> (Equilateral triangle) is been
generated. The input to the program is the target path <134> which is difficult to
obtain. The program is expected to generate the test data for the target path <134>. The
program is executed for 15 times with different population size. The chromosome
length is 15 which is three times gene length which is 5, as the number of input
variables are three and are defined by gene. The binary encoding technique has been
used and the initial population is randomly generated. According to Sthamer (1996) the
population, where there are as many chromosomes as there are bits in the chromosome
itself, is the best population. Therefore the experiment starts with the population size
greater than chromosome length. The result in Figure 1 depict that the population size
greater than thrice of chromosome length produces the better result for the target path
<134>. The x axis represents the population size and y axis represents the test data set
generated for the target path <134>by executing the program for 15 times for
population size varying from 20 to 100. The result varies with the size of the
population. The experiment showed that when the population size is thrice or four
times the chromosome length then more set of test data for target path <134> are
generated.

Experiment 2: An experiment is performed to test the effect of crossover type on
the generation of test data for a target path in triangle classification problem. The test
has been performed for one point crossover and two point crossover types. The
variation in the results are examined and compared. The comparison is depicted in
Figure 2 where two-point crossover has more probability of generating the test data for
target path<134> (equilateral triangle) when compared with one point crossover for 15
runs with different population size.

2

1

3

5 4

7 6

Shveta Parnami 830

Figure 1

Figure 2

8. Conclusion
In software testing, the generation of testing data is one of the key steps which have a
great effect on the automation of software testing. The paper discusses the algorithm
that depends on the principles of genetic algorithms to generate test data that provide
good coverage in terms of the paths it tests or visits within the application. The greatest
merit of genetic algorithm in program testing is its simplicity. Genetic algorithms are
often used for optimization problems in which the evolution of a population is a search
for a satisfactory solution given a set of constraints. The proposed experimental sets

1 1
2

6
7

5 5
6

7

0
2
4
6
8

10
12
14

20 30 40 50 60 70 80 90 100

Te
st

 D
at

a
G

en
er

at
io

n

Population Size

0
2
4
6
8

10
12
14
16

20 30 40 50 60 70 80 90 100

Te
st

 D
at

a
G

en
er

at
io

n

Population Size

Two Point
Crossover
One Point
Crossover

Testing Target Path by Automatic Generation of Test Data Using Genetic 831

have used different combinations of the GA operator to find the test data for a target
path in the CFG of a program under test. The experiment on triangle classification
problem suggests that the change in GA operators affects the test data generation
keeping the rest environment alike. The two experiments are performed in which the
first experiment shows that the population size effects the generation of test data and
the second experiment suggests that varying the GA operator i.e. crossover from one
point to two point will also vary the result. Given the same experimental environment
the two point crossover generates more set of require test data as compared to one
point crossover.

References

[1] “Automatic test data generation for path testing using a new stochastic

algorithm”, Abreu, B. T., Martins, E., and de Sousa, F. L, 2005. In Proc. of the
19th Brazilian Symp. on Software Engineering, vol19, pp247–262.

[2] “GA based multiple paths test data generator”, Ahmed,M.A.,
Hermadi,I.,Computers and Operations Research (2007).

[3] “A system to generate test data and symbolically execute
programs”,Clarke,L.,1976, IEEE Trans. on S.E.,Vol.2, pp.215-. 222.

[4] “Advanced Topics in Computer Science: Testing Path Testing”, H.Schliglof ,
M. Roggenbach, Luke Gregory 321512.

[5] “An evaluation of random testing”, Duran J.W., Ntafos S.C.,IEEE Trans. on
S.E., 1984, 10(4): 438–443.

[6] “Using Genetic Algorithms to Aid Test-Data Generation for Data-Flow
Coverage”, Ghiduk,A.S., Harrold,M.J., GirgisM.R.,14th Asia-Pacific
Software Engineering Conference, 1530-1362/07 © 2007 , IEEE, pp.41-48.

[7] “Program Test Data Generation For Branch Coverage With Genetic
Algorithm: Comparative Evaluation Of A Maximization And Minimization
Approach”, Gursaran, Ankur Pachauriand,2012, IJSEA, Vol.3, No.1.

[8] “Automated software test generation”, Korel, B, 1990, IEEE Trans. on
Software Engineering 16(8): 870–879.

[9] “Automatic test data generation for path testing using GAs”,Lin,J.C.,
Yeh,P.L., Information Sc.,vol.131,2001,pp.47-64.

[10] “Data Generation for Path Testing”, Mansour, N, Salame,M, Software
Quality Journal,12, 121–136, 2004.

[11] “Structured Testing:A Testing Methodology Using the Cyclomatic
Complexity Metric”, McCabe, Thomas, J., Watson, Arthur, H., 1996. NIST
Special Publication 500-235.

[12] “Generating software test data by evolution”,Michael C.,McGraw G.,Schatz
M., IEEE Transactions on S.E.,2001,1085-1110.

[13] “Tutorial: Program Testing Techniques”, Miller, E.F., COMPSAC ’77 IEEE
Computer Society, 1977.

[14] “Comparison of Software Test Data for Automatic Path Coverage Using
Genetic Algorithm”,Nirpal,Kale,IJCSET,2010,Vol.1.

Shveta Parnami 832

[15] “Automatic Generation of Test Case based on GATS Algorithm” Shen,
X.,Wang,Q., Wang,P., Bo Zhou,2007, AA04Z148.

[16] “Application of Genetic Algorithm in Software Testing”, Srivastava P.R., Kim
T, IJSEA,Vol.3,No. 4, 2009, pp.87-96.

[17] “The Automatic Generation of Software Test Data Using Genetic
Algorithms”,Sthamer, H.,PhD thesis, Great Britain, (1996).

[18] “The Limitation Of Genetic Algorithms In Software Testing”, Sultan H.
Aljahdali, Ahmed. S. Ghiduk, Mohammed El-Telbany, 2010, Proceedings of
the ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA).

