
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 3 (2013), pp. 201-210
© International Research Publications House
http://www. irphouse.com /ijict.htm

MARTE Genetic Algorithm for Uncovering Scenarios

Leading to Data Races in Concurrent Systems

K. Venkata SivaRami Reddy1, G. Ramesh2 and K.Prabhakar3

1JNTUA, JNTUA H.NO:2/20, Nemalladinne (V&P) Peddamudium (Mandal)
Kadapa(Dist), Andara Pradesh(S) -516411, India

2Department of CSE, JNTUA, H.NO:2/20, Nemalladinne (V&P)
Peddamudium(Mandal) ,Kadapa(Dist), Andhra Pradesh(S), -516411, India

3Department of CSE, JNTUA, H.NO:2/20, Nemalladinne (V&P) Peddamudium
(Mandal) Kadapa (Dist), Andhra Pradesh(S), -516411, India.

Abstract

Identifying the concurrency problems early in the design process is
most important. Because, these problems caused to disturbance or
damage when building larger and more complex systems. The recent
trend is Model Driven Development (MDD), so there is a method used
for the detecting concurrency problems, which is based on design
models articulated in Unified Modelling Language (UML). The UML
notation is not enough to model a system for s given purpose, so the
notation is extended via profiles. The system aim is to develop a
scalable integrated method to tailor all concurrency problems. This is
achieved through three steps. First one is extracting all relevant
concurrency information using UML/Modelling and Analysis of Real-
Time and Embedded Systems (MARTE) model diagrams. Second one
is detecting all concurrency faults by using the search-based technique.
Finally demonstrating scalability in terms of fault detection. Apart
from Dead lock and Starvation, also detecting one more concurrency
problem such as Data Races.

Keywords: Deadlock, Starvation, Data Races, MDD, UML, MARTE,
GENETIC ALGORITHM.

K. Venkata SivaRami Reddy et al

202

1. Introduction:
Concurrency problems should be recognized before in the design procedure. If not, this
is made increasingly hard as larger and more complex in concurrent systems. The
recent fashion in the direction of Model Driven Development (MDD) [4] [1], the
alternative of using UML models and their extensions as a foundation of concurrency
data at the design level is regular and realistic. These concurrency properties should
not require additional modelling or a high learning curve on the element of the
designers, or should at least diminish it. When the UML [5] notation is not sufficient to
absolutely model a system for a given rationale, the UML notation is extended via
profiles. Therefore specific significance is the standardization of the MARTE [1]
profile that deals with domain specific characteristic of real-time, concurrent system
modelling. Aim is to develop a general, automated approach that can be easily tailored
to several types of concurrency faults (such as deadlocks, starvation, data races), and
the system can be straightforwardly incorporated into a Model Driven Architecture
(MDA) approach [4], [5], [1]. This approach relies on a genetic algorithm (GA) [2]
that is tailored to different types of concurrency errors. The UML is a designing
language, which is used for visualizing system, specifying and constructing the
artefacts of software intensive systems [3], [5]. Nowadays, it is regard as the standard
for object-oriented modelling. UML [3] allows modelling various aspects of complex
systems. The models those are designed by UML present some vagueness’s and
contradictions as mentioned in several papers. This limitation can lead to contradiction
within the developed models. The usage proper techniques, particularly in the case of
complex systems, it gives notable advantages, like a simpler design without
ambiguities. Simultaneous programming is an authoritative hypothesis where actions
can be executed alongside [2]. However, this method of programming has exact
troubles. The simultaneous threads performing on the similar resources can guide to
not needed and unpredicted conditions. For example, deadlocks, live locks or data
inconsistencies may occur. Wegner explains the universal idea of lively objects. These
are activated when receiving a message. These objects may be previously executing
when receiving a message. When discussing about the external concurrency, it mean
that when two active objects implementing on the same resource with a single thread,
those will be in sequential. Also, Building models of real-time application requires a
modelling language that enables the description of the specific features inherent to
real-time domain [8]. Actually real-time applications have some qualitative features
such as deadline and period, as well as quantitative features related to communication,
concurrency and behaviour aspects. The modelling language must at least provide the
syntax (modelling concepts) to represent such features [3]. However, semantics
associated to those concepts has to be precisely defined and unambiguous in order to
ensure the excitability of real-time applications models [8]. Actually, in order to reduce
the impact of changes on the system, the system should be able to validate at early
stages of the development process, functional and extra functional properties of the
application. A way to achieve this goal is to make application models executable [3]. A
model is considered executable when it can be functioning on a hardware execution

MARTE Genetic Algorithm for Uncovering Scenarios Leading to Data Races 203

unit. A model can be operated if its behaviour is clearly and completely specified.
Hence, in order to enable a real-time application model excitability, that model has to
be specified in a language that provides on the one hand all the concepts needed with a
precise semantics and on the other hand, the concepts to ensure completeness of
behavioural models.

2. Related Works:
The system move towards covers quite a few fields of concurrent information, such as
deadlock, starvation and shared resources.

2.1 Starvation Detection
Starvation condition is the state where a procedure carries on being rejected a resource,
even though the resource is being furnished to some other process to its need.
Starvation state arise and treating them by stopping new processes from obtaining
resources.

2.2 Genetic Algorithm
A Genetic Algorithm may be decayed into the following steps:

 Starting population is to be created. Frequently a set of unsystematic
chromosomes are created [2].

 Do again the below steps awaiting some extinction measure is met:
 Estimate each chromosome using a fitness function.
 Choose the pairs of chromosomes using some strategy such as random

selection or fitness biased techniques [6], [7].
 Apply crossover on the couples of chromosomes selected and mutation on

personages [1], [2], [6].
 Create a new population by changing a part of the novel population with the

chromosomes ‘produced’ in the earlier step [1], [6].

2.3 Chromosome Representation
Genetic Algorithm starts with foremost population whose elements are called as
chromosomes. The chromosome consists of a precise number of variables which are
called genes. In order to estimate and grade chromosomes in a population, a fitness
function stand on the target function should be defined. A Chromosome is a
representation of an individual solution for a specific problem [6]. You will have to
redefine the Chromosome representation for each peculiar problem, along with its
fitness, mutate, reproduce, and seed methods. Chromosomes are the central objects in a
genetic algorithm. Chromosomes are defined by the GA Chromosome class in this
library.

K. Venkata SivaRami Reddy et al

204

2.4 Crossover Operator
Crossover picked genes from parent chromosomes and generates a fresh offspring. The
easiest way how to do this is, to select randomly some crossover point and anything
earlier than this point duplicate from an initial parent and then anything after a
crossover point replica from the second parent. Crossover operator targets to exchange
the data and genes between chromosomes [2]. Therefore, crossover operator integrate
two or more parents to regenerate fresh children, then, one of these children may
gather all good characteristics that survive in his parents. Crossover operator is not
peculiarly useful for all parents but it is useful with probability pc which is generally
fixed equal to 0.6 [6], [7], [1]. Crossover operator plays a leading role in GA, so
defining a particular crossover operator is highly required to get a best performance of
GA. A crossover operator is used to re arrange two strings to get a best string. In
crossover manipulation, recombination process generates dissimilar individuals in the
consecutive generations by adding material from two individuals of the earlier
generation. In reproduction, adequate strings in a population are probabilistically
assigned an overweight number of duplicates and a mating pool is made [7]. It is to be
noted that during the propagation phase no new strings are formed. In the crossover
operator, fresh strings are generated by interchanging information among strings of the
pairing pool.

2.5 Mutation Operator
Mutation is a genetic operator, which involves the process of changing one or multiple
gene values in a chromosome from its early state. This process can result in completely
new gene values being combined to the gene pool. By those new gene values, the
genetic algorithm is capable to attain better solution than in the past possible [6].
Mutation is the considerable part of the genetic search as helps to prevent the
population at any local optima. Mutation probability says how frequently will be parts
of chromosome mutated. If mutation is not existing, descendent is taken after
crossover without any alters. If mutation probability is 100%, whole chromosome is
altered [1], if it is 0%, not anything is modified. Mutation is made to stop falling GA
into local tremendous [7], but it must not happen very often, because then GA will
practically change to random search.

2.6 Objective Function:
The Objective Function is used to find the how much time the thread can be waited or
starved to get the regular access to gain the resource. This function is used in the
starvation detection phase to know the time to get the resource by the thread.

2.6.1 Starvation Detection:
Starvation occurs when a scheduler process rejects to provide a specific thread any
quantity of a specific resource. If there are numerous high-priority threads, a weaken
priority thread may be starved. This can have unenthusiastic effect, though peculiarly
when the lesser main concern thread has a lock on some resource.

MARTE Genetic Algorithm for Uncovering Scenarios Leading to Data Races 205

Starvation is a situation, which occurs owing to deadlock occurs. In this one of the
action is rolled back to come out from deadlock situation, so that all other processes
can continue advance for their completion. If an identical process is choose as dupe for
rollback repeatedly then this is known as starvation.

The system uses this premise to develop an appropriate fitness function. Because,
threads wait for driveway to a resource in a wait queue, we also need to analyse the
wait queue of the target lock across the time interval. If the wait queue of the point
lock be appropriate empty, then the target thread passage the lock and there is no
starvation. The fitness function is weighted such that the longer the target thread
spends waiting on the target lock, the superior its fitness.

The variable A represents the target thread. Variables start Time and end Time

denote the time interval start and end times, respectively. The group of threads
executing within the target lock at time unit i is denoted exec Threads and waiting
Threads is the set of threads waiting for access to the target lock at time i. The sets
exec Threads and waiting Threads are obtained after scheduling threads and are
calculated for every time unit of the time interval. This aims that before a fitness value
is connected with a chromosome, the execution of threads, as named by their access
times to locks in the chromosome must be scheduled by a scheduler. According to the
defined fitness function, the only conditions that would result in starvation situations
are ones where the target thread is waiting on the target lock at the end of the time
interval (i.e., A waiting threads end Time). This is the termination criterion used to
determine the presence of starvation.

2.7 Deadlock Detection:
The deadlock problem has proved a popular area of research for many years. The
earlier results are largely informal, and endure from the lack of a adequate underlying
mathematical model. There are many examples exist to specify the deadlock situation,
which may be defined as the stable blocking of a group of processes that either
struggle for system resources or converse with everyone. Obtain two processes, P and
Q, as an example. Both processes are compel resources, A and B. They execute
correspondingly in the subsequent steps:

Clearly, if P gains A at the same time Q gains B, a deadlock occurs since neither of
both can proceed to gains the other resource they need. If we observe this example and
many others, we may discover the subsequent constraints that must be current for a
deadlock to be probable:

K. Venkata SivaRami Reddy et al

206

The main objective is to illuminate that we use the same kinds of inputs and that
the main difference with starvation detection is the fitness function.

Fig. 1: Deadlock occurring process.

The fitness function in possesses a number of characteristics:
1) Deadlocks engage minimum of two waiting threads. The fitness of plots where

minimum two threads are waiting on locks is always greater than the fitness of
situation, where no thread or atleast one thread is waiting.

2) The fitness function is determined by the total number of locks enabled, i.e., an
additional thread implemented in the lock should improve the fitness value.

3) The fitness function is determined by the total number of threads remain in
lock state which mean an additional thread waiting to acquire a lock should
increase the fitness.

Figure 2: Deadlock and starvation depicted in an RAG.

2.8 MARTE Profile:
This section describes how can fulfil the first of three steps in achieving the system
goal. It describes the feasibility of extracting all relevant concurrency information from
UML/MARTE design diagrams. First describing the present, in UML. Then we show
how the missing concurrency aspects can then be extracted from MARTE models [1].
In UML, the active objects have their own thread of lead, and can be concerned with as
simultaneous threads. The UML standard extensions, such as the MARTE profile,

MARTE Genetic Algorithm for Uncovering Scenarios Leading to Data Races 207

afford method to model detailed information concerning to concurrency. The MARTE
profile is replacement to the Schedulability, Performance and Time (SPT) profile [1].
MARTE is geared toward both the real-time and embedded system domains. The
profile is approximately divided into three subdivisions: MARTE Foundation Model,
MARTE design model and MARTE analysis model. The anterior models various
features of real-time and embedded systems, while posterior allows the annotation of
models for system analysis purposes. Both compartments are based on a common
foundation, which is MARTE foundation, which describes the time concepts and use
of concurrent resources. Much like its SPT antecedent, the MARTE profile is modular
in structure, allowing users to select the exact subsets needed for their applications.

3. Proposed work:
The proposed system tailored other concurrency problem such as Data races (shared
resources). To that gathering the all the relevant concurrency information using UML
profiles and tailor the generic algorithm to the data races.

Data Races:
Data races, a specific type of race conditions, are quite common in concurrent systems.
An anomalous behavior due to unexpected critical dependence on the relative timing
of events. These types of faults are due to unsynchronized access to a same memory
location.

Fig 3: Representation of Data Race Problem.

The system also assesses the performance of our approach on systems with varying

structures to establish the particular characteristics of the system. Results of the
detection rate of data races are presented in Table 1. The proposed technique is capable
of detecting data races in Dining Philosophers, but with very different probabilities.
We observe that GA does better: 34% detection rate. This confirms that where the
search space is large and complex, GAs is known to yield much better results.

4. Results:
In large, complex search spaces, where few concatenations afford data races, the GA
yields significantly higher detection probabilities than other techniques. Because, these

K. Venkata SivaRami Reddy et al

208

probabilities for a run can still remain low, the GA must be run as many times as
possible, given time constraints, to obtain the highest possible overall probability of
detecting data races. The following table describes the result comparison between
previous performance and current performance of GA on Dining Philosophers
problem.

Table 1: Performance of GA on Dining Philosophers.

 DINING PHILOSOPHERS
Search Space Current Result Previous Result
Detection Runs 48/50 22/25
Total Runtime 01:02:02:255 2:34:34:482
Detection rate 92% 88%

The Fig 4 shows the detection of faults while performing GA on dining

philosopher’s problem. These yield the better detection rate than the earlier result. In
the same way the Fig 5 represents the execution time of GA on Dining philosopher’s
problem and it shows the improvement in speed of execution.

Fig 4: Scalability in terms of Fault Detection.

Fig. 5: Scalability in terms of Execution time in Seconds.

MARTE Genetic Algorithm for Uncovering Scenarios Leading to Data Races 209

5. Conclusions:
Concurrency abounds in many software systems, where threads typically access many
shared resources. If not addressed properly, such accesses can lead to concurrency
errors, which may lead to appreciable system failure. The system describes an
approach, based on a tailored genetic algorithm (GA) search, for detecting one type of
concurrency error: data races. The advances are based on the analysis of design
delegations in UML completed with the MARTE profile. Since, the goal is to present
an automated approach that can be operational in the perspective of model-driven and
UML-based development.

References:

[1] Marwa Shousha, Lionel C. Briand, Fellow, IEEE, and Yvan Labiche,

Member, IEEE “ UML/MARTE Model Analysis Method for Uncovering
Scenarios Leading to Starvation and Deadlocks in Concurrent Systems” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2,
MARCH/APRIL 2012.

[2] T. Back, “Self-Adaptation in Genetic Algorithms,” Proc. European Conf.
Artificial Life, pp. 263-271, 1992.

[3] F. Schneider, “UML and Model Checking,” Proc. Fifth Langley Formal
Methods Workshop, 1999.

[4] Stephen W. Liddle, ” Model-Driven Software Development”.
[5] James Rumbaugh, Ivar Jacobson, Grady Booch, “ The unified modelling

language reference manual”.
[6] M. Dorigo and V. Maniezzo, “Parallel Genetic Algorithms: Introduction and

Overview of Current Research,” Parallel Genetic Algorithms: Theory and
Applications, J. Stender, ed., pp. 5-43, IOSPress, 1993.

[7] R.L. Haupt and S.E. Haupt, Practical Genetic A lgorithms. Wiley Interscience,
1998.

[8] F. Schneider, “UML and Model Checking,” Proc. Fifth Langley Formal
Methods Workshop, 1999.

[9] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML. Addison-Wesley, 2000.

K. Venkata SivaRami Reddy et al

210

