
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 4 (2013), pp. 355-360
© International Research Publications House
http://www. irphouse.com /ijict.htm

Software Product Line Engineering:
Paradigm for Product Family

Geetika Vyas1, Amita Sharma2 and Astha Pareek3

1Dept of CS & IT, The IIS University, Jaipur, Rajasthan, INDIA.

2,3Dept of CS & IT, The IIS University, Jaipur, Rajasthan, INDIA.

Abstract

The modeling foundation of Software Product Line Engineering
(SPLE) is the segregation of variant features of all the products which
belong to a family. In brief, its aim is to catalog what is common and
what differs between products. Feature is a basic term associated with
SPL and feature model diagram portrays the product deviation. SPLE
is a powerful approach to increase the efficiency of the software
engineering process and variety of software system can be developed
from a single software product line. Therefore it should be realized that
a low quality design can ripple through many generated software
systems. This state of the art presents a comprehensive overview of the
software product lines theory and discusses the relationship between
feature models and the various qualities attributes affecting them .The
available methods (metrics) to measure these attributes are also
discussed in brief.

Keywords: software product line, feature, feature model, quality,
metrics.

1. Introduction
Products being developed for the international market must be adapted for diverse
cultural or legal environments, and for different languages, and must provide
appropriate user interfaces. Due to cost and time constraints it is not possible for
software developers to develop a new product from scratch for each new customer, and
so software reuse has to be increased. Software Product Line Engineering (SPLE)
offers a solution to these not so new, but increasingly challenging problems.

 Geetika Vyas et al

356

 SPLE is an approach that develops and maintains families of products taking
advantage of their common aspects and predicted variability’s at the same time. SPLE
focuses on reuse in systems development, as a viable and important software
development paradigm.

 The focus of this paper is on and around SPLE and feature models. Section II
contains the basic concepts related to this. Section III focuses on quality attributes of
feature models. Section IV discusses the various quality attributes measures and scope
for future work. Section V contains references.

2. Software Product Line
As defined by Clements, Software Product Line is “A set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of a
particular market segment”.

 SPLE includes software engineering methods, tools and techniques for creating a
collection of similar software systems from a shared set of software assets using a
common means of production. It focuses on systematic reuse instead of ad hoc reuse,
leading to business benefits like improved time to market, enhanced performance,
reduced development and maintenance costs, mass customization and improved
software quality. In SPLE, a line means a set of software products that are related and
share commonalities like data structures, software components and architecture etc.

 This approach is structured into two main processes: Domain Engineering and
Application Engineering. Domain engineering finds, records, constructs and presents
set of software artifacts that can be used in future software’s who specialize in that
particular application domain. As a result, domain knowledge is achieved in the form
of reusable software assets, which leads to faster software production and reduced
time-to-market. It is the basis of SPLE and is also called engineering-for-reuse whereas
application engineering which produces the individual applications is often called
engineering-with-reuse. It centers on development with reuse, and develops the final
products, using the core assets and the specific requirements expressed by the
customers.

3. Features and Feature Models
“A feature is a structure that extends and modifies the structure of a given program in
order to satisfy a stake holder’s requirement, to implement and encapsulate a design
decision, and to offer a configuration option”. It is a unit of functionality that satisfies a
requirement, represents a design decision, and provides a potential configuration
option. They are modular entities encapsulating a particular functionality of the
system.

 Features are helpful in the explanation of commonality and variability in the
analysis, design, and implementation of software product lines. With the selection and
removal of features, software provides different facilities and different configurations.

Software Product Line Engineering: Paradigm for Product Family 357

Typically, from a set of features, many different software systems can be generated
that share some common features and at the same time differ in others.

 A feature model represents all the products of the software product line. These
feature models are visually represented by feature diagrams. Hierarchically arranged
features of a feature model can be classified as:

 Mandatory
 Or feature group
 Optional
 Excluded
 Includes
 Alternative
Figure 1 shows a sample feature model of E-Shop. It has 3 mandatory features viz.

catalogue, payment, security and 1 optional feature viz. search. The mandatory feature
payment has two options viz. bank transfer or credit card. The security feature has two
alternative features viz. high or standard.

Figure 1: Sample feature model of E-Shop.

4. Software Quality Attributes
According to ISO the term quality can be defined as –“the totality of characteristics of
an entity that bear on its ability to satisfy stated or implied needs”.

 For any product line to continue to function and evolve as needed, it is imperative
to look upon all the quality attributes that may affect them in future. Same is the case
with feature models which are an inseparable part of SPLE.

 Quality attributes can be categorized into two types: internal and external. Internal
quality attributes can be directly measured on the basis of product features such as size,
length, or complexity. Whereas external quality attributes, e.g. efficiency, reliability
and maintainability can only be measured with respect to how a software system
relates with its environment and therefore, are measured once the software system is
fully developed and deployed. Since external quality attributes are hard to evaluate in
early phases of the software development process, an indirect measurement based on
internal quality attributes is devised. The reason being, that internal quality attributes
are appropriate determinants for external quality attributes.

 Geetika Vyas et al

358

 Quality attributes are the overall factors that affect run-time behavior, system
design, and user experience. Some of these attributes are related to the overall system
design, while others are specific to run time, design time, or user centric issues. The
extent to which the application possesses a desired combination of quality attributes
such as usability, performance, reliability, and security indicates the success of the
design and the overall quality of the software application. Out of these usability and
complexity play special role in SPL and feature models.

 Usability which is a user quality can be defined in terms of ease of use, i.e. models
should be user friendly. In other words, they should be easy to learn, navigation should
be simple, easy to use for input preparation, operation, and interpretation of output,
easy for new or infrequent users to learn or use.

 It defines how well the feature model meets the requirements of the user i.e. the
variability and commonality. It is concerned with evaluating how well the model is
understandable and communicative. It also affects reusability of feature models, which
is a good cost efficient and time saving development way. Feature models should be
generic enough to be used easily across different application. Reusability is a design
quality and it defines the capability for feature models to be suitable for use in other
applications and in other scenarios. It minimizes the duplication of features and also
the implementation time.

 The complexity of a model is based on the number of (different types of) features
and on the number of (different types of) (dynamically changing) relationships (or
interactions) between them. In SPL feature models, when features are added, the
variability is increased. This in turn increases the complexity of the feature model. It is
seen that high complexity results in reduced understandability which impedes the
analyzability, adaptability and flexibility of the model, amongst other model qualities.
This relationship between structural complexity and external quality properties like
understandability and modifiability has been repeatedly demonstrated in various
works. Feature models which are complex are difficult to analyze, modify, extend,
integrate, and reuse. To achieve the promised benefits of SPL in terms of increased
reusability and productivity, it is necessary to control understandability.
Understandability, per se, is not an easy-to-measure quality attribute in the early stages
of the software development process. Therefore, indirect measures based on the
structural complexity of the model are often useful.

 The assessment of complexity can be done with the help of metrics. Metrics are
software measurement units, which measure the degree to which a given system,
component or process possesses a given attribute. Metrics use numerical ratings to
measure various domains like the complexity and reliability of source code, the length
and quality of the development process and the performance of the application when
completed. These metrics also serve to improve the quality of the resulting software
products by helping to predict the possible quality of the final system and improve the
product line based on these predictions.

 Despite the emergence of methods and techniques, the need of measures for
assessing quality attributes in software product line feature model still needs to be

Software Product Line Engineering: Paradigm for Product Family 359

fulfilled. Study shows that very limited work has been done in the field of defining and
validating metrics and assessment of the internal and external quality attributes in
reference to feature models. Oliveira et. Al , Asim Rahman, Zhang et. Al. have
proposed metrics for accessing quality of product line architecture. Assessment of the
architectural quality is important but it is equally important to design methodologies
and processes for creating high quality software product line conceptual models, which
are most often in the form of SPL feature models. But no well-established and
acknowledged methodology is available. The lack of appropriate mechanisms for
measuring the properties of software product lines can be a reason for this. A set of
structural metrics have been proposed by Bagheri et.al for assessing the maintainability
of software product lines feature model. But the core focus of software product lines is
on reusability and the metrics proposed in the paper were found to be inefficient to
assess the same. The author has used measures for SPL feature models proposed by
Briand et.al.

Table 1: Measures for SPL feature models.

Measure type Measure name
Size measure Number of features (NF)

Number of top features (NTop)
Number of leaf features (NLeaf)

Length measure Depth of tree (DT)
Structural
complexity
measures

Cyclomatic complexity (CC)
Cross tree constraints (CTC)
Ratio of variability (RoV)
Coefficient of connectivity-density (CoC)
Flexibility of configuration (FoC)

From the above table, various numeric values can be generated for any feature

model. For the E-Shop feature model we can derive various values like
NF=9,NTop=4,NLeaf=6,DT=2,RoV=1,FoC=0.11 and hence forth. These values can
be further studied by employing classical statistical correlation techniques in order to
understand how well each of the structural metrics can serve as discriminatory
references for attributes like usability and it sub characteristics. But it should be noted
that analogous to metric design for other software engineering discipline, this set of
metrics is not be comprehensive and other advanced research can further complete this
proposed set by defining new metrics from other perspectives as well.

5. Conclusion
Many software engineering researchers have proved that measurement is a good means
of improving software quality. But only handful researchers have addressed the issue

 Geetika Vyas et al

360

of proposing appropriate structural quality metrics for software product line feature
models. Available generic metrics need to be analyzed and applied to assess the quality
of the software product lines feature model. The requirement of valid metrics and the
limitations of the currently available metrics, should give motivation to researchers to
work in this direction.

References

[1] Asim Rahman (2004), “Metrics for the Structural Assessment of Product Line

Architecture”, Master Thesis, School of Engineering Blekinge Institute of
Technology, Sweden, Thesis no: MSE-2004:24.

[2] Ian Sommerville (2008), Software Engineering, Pearson Education, India.
[3] E. Bagheri, D. Gasevic (2011), “Assessing the Maintainability of Software

Product Line Feature Models Using Structural Metrics”, Springer, Volume 19,
Issue 3, 579-612.

[4] D. M. Weiss, P. C. Clements, K. Kang, and C. Krueger (2006), “Software
product line hall of fame,” in SPLC ’06:Proceedings of the 10th
International on Software Product Line Conference, Washington, DC, USA:
IEEE Computer Society, 237.

[5] E. A. Oliveira Junior, J.C. Maldonado, I.M. S. Gimenes (2010), “Empirical
Validation of Complexity and Extensibility Metrics for Software Product Line
Architectures”, Proceedings of the 2010 Fourth Brazilian Symposium on
Software Components, Architectures and Reuse, 31-40.

[6] Manuel F. Bertoa, Jose´ M. Troya, Antonio Vallecillo (2006), “Measuring the
usability of software components”, The Journal of Systems and Software,
427–439.

[7] T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma (2008), “Some Metrics for
Accessing Quality of Product Line Architecture”, Proceedings of the 2008
International Conference on Computer Science and Software Engineering,
Washington, DC, USA, IEEE Computer Society, (500–503).

