
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 729-736
© International Research Publications House
http://www. irphouse.com /ijict.htm

Improving Software Requirements through
Formal Methods: A Review

S.W.A. Rizvi1, R.A. Khan2
 and R. Asthana3

1School of Engineering, Babu Banarasi Das University,

Lucknow, U.P., INDIA.
2Department of Information Technology, Dr. Bhimrao Ambedkar University,

Lucknow, U.P., INDIA.
3Department of Electrical Engineering, Babu Banarasi Das National Institute of

Technology & Management, Lucknow, U.P., INDIA.

Abstract

Almost twenty five years later, eliciting, representing and organizing
software requirements remains one of the most challenging problems
in software development. Many requirements errors are passed
undetected to the later phases of the life cycle and correcting these
errors during or after implementation have been found to be extremely
costly. Studied have suggested that formal methods have tremendous
potential for improving the clarity and precision of requirements
specifications and in finding important and subtle errors. The aim of
this paper is to systematically review the available literature exploiting
the benefits of formal methods in improving software requirements.
The paper presents a systematic literature review comprising of four
phases through which appropriate papers have been selected. The
review highlights the role of formal methods in improving software
requirements. At the end, paper presents findings and observations
identified, during literature review, followed by motivation and future
work.

Keywords: Software Requirements, Formal Methods, Requirements
Elicitation, Systematic Literature Review.

S.W.A. Rizvi et al

730

1. Introduction
The complexity of modern software systems raise rapidly over recent years as a result
of rising number of requirements for a new system. Complexity of requirement will
rise up the difficulty of system development process. This is crucial for highly reliable
systems whose development often requires the critical areas. (Roslina and Noraziah,
2010) In a landmark article published in 1987, (Fred Brooks, 1987) states that “The
hardest single part of building a software system is deciding what the requirements are
…… No other part of the work so cripples the resulting system if done wrong …..[or]
is as difficult to produce and hard to fix later on.” It has also stated that ‘early defect
fixes are typically two orders of magnitude cheaper than late defect fixes’. (Rzepka,
1989)

In a study Lutz found that safety-related software errors arose most often from
inadequate or misunderstood requirements. (Lutz, 1993) It is also clear that
conventional techniques fail to catch many requirements errors. (Kelly et al., 1992)
However, the use of formal methods in real industrial projects is increasing. New
software engineering has served formal methods in the development of critical-safety
systems. Formal method forms the basis of developing reliable software for critical
systems because these methods are based on mathematics and logic. Therefore they are
provable. (Nami and Malekpour, 2008) As the awareness of Formal Methods is
growing, so is the research literature on various mechanisms, challenges and strategies
of handling them. However, there has not been any significant effort to systematically
identify, synthesize, and report the literature on the use of Formal Methods to improve
requirements. To address this research gap, this systematic literature review seeks to
collect and compare existing evidence on formal methods, with the aim to provide
researchers with a direction of future research and practitioners with advice in formal
method technology adoption. In this review, authors only investigate papers which
solely focus on FM applications to refine quality requirements.

The paper is structured as follows: Section 2 describes the research method used in
this systematic review. In Section 3, individual papers are reviewed, while Section 4
discusses findings and observations from the review regarding improvements in
software requirements through formal methods and the paper concluded with future
work in section 5.

2. Research Method
This study has been carried out as a Systematic Literature Review (SLR). A SLR is a
methodical way of identifying, assessing, and analyzing available literature that is
relevant to a particular research problem. (Kitchenham, 2007) A SLR includes
activities such as planning the review, search strategy and search, selection of studies
and quality assessment. All these steps are followed in the following sub-sections.

Improving Software Requirements through Formal Methods: A Review 731

2.1 Data Sources and Search Strategies
The search strategy included electronic databases and manual searches of conference
proceedings. The following electronic databases were searched:

 ACM Digital Library (portal.acm.org)
 Science Direct – Elsevier (www.sciencedirect.com)
 IEEE Xplore (ieeexplore.ieee.org)
 Springer Link (www.springerlink.com)

In addition, the proceedings of the International Symposiums on Formal Methods

were manually searched. These symposiums are focused on formal methods and
organized by Formal Methods Europe (FME) roughly every eighteen months. Besides
it, volumes of International Requirements Engineering Conference which is the major
event in requirements engineering were also searched. The process for selection of
studies comprised four phases. In phase 1, databases are searched using the relevant
search terms. The search was performed on April 15, 2013 and resulted in a total of
2245 unduplicated papers.

2.2 Publication Selection
After getting 2245 relevant studies from phase 1, the first author went through the titles
of all the 2245 studies in the second phase, in order to know their relevance to the
Systematic Literature Review. In this phase, articles with titles that indicated clearly
that the articles were out of scope of the SLR were excluded. To minimize the threat of
excluding relevant papers, the first author randomly selected two sample sets (with
different papers) of 10% of the excluded papers. The second and third authors were
provided with one sample set each to include or exclude papers. Any disagreement
between the authors was resolved by discussion that included all three researchers. At
the end of second phase, 1072 relevant titles were identified. During the third phase,
the first author reviewed all 1072 abstracts, and the second and third author reviewed
25% of the excluded papers. Six papers were up for discussion in phase 3 and one
paper was added to the included papers. At the end of phase III, 205 papers were left
for the last phase of the selection process.

2.4 Publication Screening and Quality Assessment
The following screening criteria, inspired by (Tore and Torgeir, 2008), were used to
ensure the quality of the papers and to exclude unrelated research papers.

 SC1: Is the study focusing on improving requirements?
 SC2: Are the research questions, objectives of the study and aims well defined?
 SC3: Is the studied context well defined?

On the basis of the above screening criteria 18 papers out of the 205 papers are

finally selected. Because of the restriction of maximum four pages, author has
presented the individual review of only five studies out of 18 in the following section,
while the findings and observations are being compiled from all the eighteen.

S.W.A. Rizvi et al

732

3. Related Works
Research in a particular field requires an elaborate review and study of literature
related to that subject. A systematic review of the literature provides information
regarding, what has been done in the area, leading to a significant investigation.
Detailed and careful reviews of the experts and researchers also promote greater
understanding of the field, procedures, methods and algorithms and enable to frame
useful hypothesis.

 In a technical report (Easterbrook et al., 1997) of the research (carried out in

part by the Jet Propulsion Laboratory, California under a contract with the
NASA) Steve Easterbrook, described three case studies in the lightweight
application of formal methods to requirements modeling for spacecraft fault
protection system. The formal methods were applied very early in the
requirement engineering process, to validate the evolving requirements. The
results were fed back into the projects, to improve the informal specifications.
In all three cases, formal methods enhanced the existing verification and
validation processes, by testing key properties of the evolving requirements,
and help to identify weaknesses.
From the paper it is noticed that each case of formal modeling was carried out
by a small team of experts who were not part of the development team. Results
from formal modeling were fed into the requirements analysis phase, but
formal specification languages were not adopted for baseline specifications.

 In (Fatwanto, 2012), author proposes a new method for translating software
requirements specified using natural language to formal specification.
Requirements specification written in a scenario-like format will be
transformed into class diagram’s components.
From the paper it is noticed that the proposed method has at least two
limitations. First, it can only translate software requirements specified in the
Concern-Aware Requirements Engineering (CARE) format only. Second, the
translation cannot translate requirements specification into a complete set of
class diagram. It can only transform requirements specification into classes
along with their respective attributes. It still lacks the capability to obtain
relationships among classes, class associations, and class generalization or
specialization.

 In (Dubravk, 2007) author proposed an approach to derive formal
specifications of reactive systems from their informal requirements. The paper
also proposed a new requirement language, and showed how to transform the
informal requirements of a reactive system into requirements written in this
new intermediate language. The derived requirements allow to better structure
the informal requirements. Subsequently the author showed how these
requirements are then systematically translated into a formal specification in
the B- Method. The author also validated the proposed approach through a case
study.

Improving Software Requirements through Formal Methods: A Review 733

From the paper it is noticed that the paper has used a different concept of
intermediate requirement language that works as bridge between informal and
formal requirements. Also the approach used distinguishes requirements from
specifications. The initial informal requirements are transformed through an
intermediate requirement language into a formal specification.

 In (Jingang and Shenghui, 2010), authors specified and verified the design of
library management system of Beijing University of Technology using
Prototype Verification System (PVS). In the paper author described the
requirements of the system and gave its Entity Relationship (E-R) model, then
designed the formal specification of the E-R model and database operations
based on the requirement analysis. Finally the author verified the design by
proving some critical properties according to the specifications.
From the paper it is noticed that PVS has provided a well-integrated
environment for development and analysis of formal specifications. It is
beneficial to formal specification and verification of system requirement and
system design.

 In (Mat et al., 2012) authors describe an application of the SOFL (Structured
Object-Oriented Formal Language) approach to the construction of a
specification during requirements analysis. In order to describe on how this
approach can be applied to capture requirements using SOFL easily, author
used a case study to develop an examination monitoring system for construct
abstract requirements.
From the paper it is noticed that the study demonstrates the suitability of SOFL
to capture detail requirements and provides with an insight into the knowledge
of how SOFL approach can be effectively used. Also SOFL is straightforward,
easy to follow, and provides simple formal notation for developing
specifications. But the study only limited to informal and semi-formal
specifications and not formal. Therefore using other approaches, such as UML
and B might be more fruitful.

After going through above paragraphs it can be easily inferred that the research is
going on continuously in the direction of improving software requirement development
process through the applications of formal methods and still there is a lot of scope to
further contribute in the same area.

4. Findings and Observations
From the reviews presented in previous section it can be inferred that there is growing
interest in formal methods because they offer rigorous support of computer system
development. Formal methods are particularly desirable in safety-critical applications
such as process control, aviation, medical systems, railway signaling and many others.
It is difficult to find an application that would not benefit from the rigor brought by
formal methods. Adopting formal methods in a software company is more a strategical
and methodological issue than a technical one. The author does not believe or advocate

S.W.A. Rizvi et al

734

the widespread use of these methods in the software industry in general; however their
application should instead be considered when reliability, safety or security is a
concern. Conscientious industrial applications of formal methods have already been
conducted successfully in key areas that have become flagship application areas.

Formal Specifications and verification are not easy or cheap, but the real cost has
to be considered in the long term. On the other hand, their conclusions have to be taken
with care, formal methods can only be used to specify or prove what was carefully
stated beforehand, and cannot be used to reason about what was not. Formally
specifying and verifying a whole system is unlikely to be feasible or even reasonable.
The advisable practice is to determine the critical parts of the system to be designed
and validated, and to apply formal methods on those parts only.

5. Conclusion and Future Work
Every discipline must learn as much, if not more, from its failures as its successes. In
this spirit the literature has been reviewed systematically, to better understand past
work and outlines possible avenues for future success. The review of the role of formal
methods to improve requirements presented in the paper highlights the strengths of
formal methods in a way that makes the requirements unambiguous, consistent,
complete and precise.

Specifically, it could be concluded that the use of formal methods in software
development is going to be a continuing challenge for many years to come. One
important observation that is being noticed in this review is implementing formal
methods early in software development life cycle specially in requirements elicitation.
Therefore, there appeared to be a need for establishing an alignment between
requirement elicitation and formal methods, that enables organizations to work on
requirements that are more unambiguous, complete, verifiable, consistent, modifiable
and traceable. Improving the ability to perform elicitation will also improve the
likelihood that developed system will meet their intended customers’ needs.

References

[1] A. Fatwanto (July, 2012), “Translating Software Requirements from Natural
Language to Formal Specification”, IEEE Conference on Computational
Intelligence & Cybernetics, Bali, pp. 148-152.

[2] A. R. Mat, M. A. khairuddin, A. B. Masli and M. N. Jambli (June, 2012),
“Applying SOFL to Construct Requirements Specification for Examination
Monitoring System”, 3rd International Conference on Software Engineering
and Service Science (ICSESS 2012), Beijing, pp. 71-74.

[3] B. A. Kitchenham (July, 2007), “Guidelines for performing Systematic
Literature Reviews in Software Engineering, Tech. Rep., EBSE-2007-001. UK
URL<http://www.dur.ac.uk/ebse/>.

Improving Software Requirements through Formal Methods: A Review 735

[4] D. Tore and D. Torgeir (Aug., 2008), “Empirical Studies of Agile Software
Development: A Systematic Review”, Information and Software Technology,
50, 9-10, pp. 833-859.

[5] F. P. Brooks (April, 1987), “No Silver Bullet: Essence and Accidents of
Software Engineering”, IEEE Computer, 20, 4, pp. 10-19.

[6] I. Dubravk (July, 2007), “Deriving Formal Specifications from Informal
Requirements”, Proceedings of the 31st IEEE Annual International Computer
Software and Applications Conference, Beijing, pp. 145-152.

[7] J. C. Kelly, J. S. Sherif and J. Hops (Feb.,1992), “An Analysis of Defect
Densities Found during Software Inspections”, Journal of Systems and
Software, 17, 2, pp. 111-117.

[8] M. R. Nami and A. Malekpour (2008, July), “Formal Specification of a
Particular Banking Domain with RAISE Specification Language”, IEEE
Symp. on Computers and Communications, Marrakech, pp. 695-699.

[9] M. S. Roslina and A. Noraziah (2010, May), “A Venn Requirement Language
for User Requirement”, IEEE International Conference on Electronic
Computer Technology (ICECT-2010), Kaula Lumpur, pp. 223-227.

[10] N. Jingang and S. Shenghui (Dec., 2010), “Design Verification of BJUT
Library Management System with PVS”, IEEE Int. Conference on
Computational Intelligence and Security, Nanning China, pp. 624-628.

[11] R. R. Lutz (Jan., 1993), “Analyzing Software Requirements Errors in Safety-
Critical Embedded Systems”, Proc. of the IEEE International Symposium on
Requirements Engineering, San Diego, pp. 126-133.

[12] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton
(1997), “Experiencing Using Light-Weight Formal Methods for Requirements
Modeling”, Technical Report of the research (carried out in part by the Jet
Propulsion Laboratory, California under a contract with the NASA).

[13] W. E. Rzepka (Jan., 1989), “A Requirements Engineering Testbed: Concept,
Status, and First Results”, Proc. of the 22nd Annual Hawaii International
Conference on System Sciences, Kailua-Kona, pp. 339-347.

S.W.A. Rizvi et al

736

