
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 965-972
© International Research Publications House
http://www. irphouse.com

A Hybrid of Random Search and PSO for Solving
Constrained Multi-Objective Optimization Problems

Ashok Pal1, and S.B.Singh2

1,2Department of Mathematics
Punjabi University, Patiala (Punjab)-India

Abstract

Suitable solutions for multi-objective optimization problems are
investigated as a set of solutions in the literature, each of which
satisfies the objectives at an acceptable level without being dominated
by any other solution. The proposed algorithm in this paper is a hybrid
of the particle swarm optimization algorithm [1] and a random search
technique with quadratic approximation formula[2] named Random
Search Quadratic approximation Particle Swarm Optimization
(RQPSO) algorithm. In this proposed algorithm, a probability having a
certain value provided by the user has been fixed. In every iteration, if
the uniformly generated random number r(0,1) is less than that value ,
then the velocity vector is generated by the standard PSO algorithm
otherwise it is generated by random search technique with quadratic
approximation formula [2]. The proposed algorithm is tested on 13 test
problems taken from the literature and are listed in the paper. Results
from the proposed algorithm are compared with the known results
from the literature and it has been observed that the proposed
algorithm improves its performance in number of cases.
Keywords- Particle Swarm Optimization(PSO), Multi-objective
optimization problems(MOOP) and Random Search Quadratic
approximation Particle Swarm Optimization (RQPSO).

1. Introduction
An art of selecting the best alternative amongst a set of options is called an
optimization i.e. the process to maximize the profit and minimize the losses is an
optimization. In most of the non linear programming problems (NLPP), a global
optimal solution rather than a local optimal solution is desired.These days with the
growing awareness of the advantages of optimization and easy availability of

966 Ashok Pal and S.B.Singh

computers a new category of optimization techniques known as ‘heuristic based
optimization technique’ has also introduced in optimization theory. No Free Lunch
theorem [3] states that the performance of all optimization algorithms for the set of
all possible optimization functions, is equivalent. There does not exist a
computational algorithm which can guarantee to find the global optimal solution of
each and every optimization problem in a finite number of steps. Therefore in
practical real life optimization problems, there is always a need for developing more
robust numerically oriented computational techniques which could be used to solve
different types of optimization problems arising in different real life situations[4].
When an optimization problem involves more than one objective function, the task of
finding one or more optimal solutions is known as multi-objective optimization.
Multi-objective optimization problems consist of several objectives that are necessary
to be handled simultaneously. Such problems arise in many applications, where two
or more, sometimes competing and/or incommensurable, objective functions have to
be minimized/ maximized concurrently. A general formulation of a multi-objective
optimization problem consists of a number of objectives with inequality and/or
equality constraints. Mathematically, the problem can be expressed as follows:
 Min/Max F(x) = [f1(x), f2(x), …, fm(x)] subject to the constraints gk(x) ≤ ck, k = 1,
2, …, K and xi

(L) ≤ xi ≤ xi
(U) i = 1, 2, …, n. where x = (x1, x2, …, xn) is solution

vector in X, which is a set of feasible solutions. Objective vector F(x) = [f1(x), f2(x),
…, fm(x)] maps solution vector x = (x1, x2,..,xn) in decision space to objective space
for m ≥ 2 i.e. the problem is to find x = (x1, x2, …, xn) which optimize f1(x), f2(x), …,
fm(x) such that gk(x) ≤ ck. In general, no solution vector X exists that minimizes all
the m objective functions simultaneously. There is no single solution to the problem
rather, we get a set of solutions known as Pareto-optimal set/Pareto-front i.e. the
optimal solution is not a single point but it is a region in the design space called the
pareto-front.

PSO is a robust stochastic optimization technique developed by Dr. James Kennedy
(social-psychologist in USA) and Dr. Russell Eberhart (Professor of electrical

engineering in USA) [5] inspired by social behavior of bird flocking or fish schooling.
Individuals in a population learn from previous experiences and the experiences of

those around them. The direction of movement is a function of current position,
velocity, location of individuals ‘best’ success and location of neighbors ‘best’

successes. Therefore, each individual in a population will gradually move towards the
‘better’ areas of the problem space and the overall population moves towards ‘better’

areas of the problem space.The two basic equations in the working of the standard
particle swarm optimization (SPSO) algorithm [6] are the velocity and position

vectors which are given as

)2.....(..........).........1()()1(

)1...()]()([)]()([)()1(2211





tvtxtx
txtprctxtprctwvtv

iii

component
social

ig

component
cognitive

ii

component
weight
inertial

ii

    

Where,),.......,(21 iniii xxxx  is the position of the ith particle,),.......,(21 iniii pppp  is
the best position of the ith particle achieved based on its own experience so far and

A Hybrid of Random Search and PSO for Solving Constrained Multi- 967

),.......,(21 gnggg pppp  is the position of the best particle based on the overall swarms
experience. Shi and Eberhart [6]suggested that a value between 0.8 and 1.2 provided
good results and Eberhart and Shi [7] shown it decreases linearly between 0.9 to 0.4.
 Clerc and Kennedy [8][1] used a constriction factor C to generate the new
velocity and observed that there can be many ways to use the constriction coefficient
C. One of the simplest methods of using C is the following :
)3..())).......()(())()(()(()1(2211 txtprctxtprctvCtv igiiii 

2. The Proposed Algorithm
The proposed algorithm is a hybrid of the particle swarm optimization algorithm [1]
and a random search technique with quadratic approximation formula [2] named
Random Search Quadratic aproximation Particle Swarm Optimization (RQPSO)
algorithm. In this proposed algorithm, a probability having certain value provided by
the user has been fixed. In every iteration, if the uniformly generated random number
r(0,1) is less than that value, then the velocity vector is generated by the equation(3)
of the PSO algorithm otherwise it is generated by equation (4) of random search
technique with quadratic approximation formula[2] as given below:

)4.......(
)])(())(())(([
)])(())(())(([

*5.0
213132321

2
2

2
13

2
1

2
32

2
3

2
21

bbbfbbbfbbbf
bbbfbbbfbbbfp




 ,

where p gives the extremal point of the quadratic curve passing through the points 1b ,

2b and 3b .
The flow of the proposed algorithm is as under.
BEGIN:
 Create and Initialize an n-dimensional swarm S
 {)(txi : =1to S} uniformly between 0 and 1.
 Set constriction factor C=0.719 and 1c = 2c =2.0.
 For i=1 to S,
 For d=1 to n,
 Assign some value to P between 0 and 1.
 If r (0, 1) < P , then
 generate velocity vector using equation (3) of PSO algorithm[1],
 else generate it using equation (4) random search with quadratic approximation [2].
 Calculate particle position as)1()()1( tvtxtx iii
 End- for-d;
 Compute fitness of updated position; if needed,
 update historical information for Pi and Pg;
 End-for-i;
 Terminate if Pg meets problem requirements;
END

968 Ashok Pal and S.B.Singh

3. Performance Evaluating Criteria And Parameter Settings
AFE: Used average number of function evaluations for successful runs.
SR = Success Rate = (No of successful runs (NR) /Total runs)*100 = % age of
successful runs to total runs.

AE = Average Error =
NR

ff
n

opt )(min

, where NR is the number of runs, SD:

Standard deviation of the error.
Parameters Used: max. no. of functions evaluations(MFE) taken=50000, no. of
runs(NR)=20,constriction factor(C) =0.719, accelerating coefficients 1c = 2c =2, error
tolerance()=0.001.
PC Configuration: Processor- Intel Dual Core, RAM-2 GB, Operating System-
Window7, Software used- C++/Visual Studio and the random numbers are generated
using inbuilt rand () function for the algorithm.

4. Test Functions

S.N. Test Problem
1. [9] 10,5..)5()5()(,)()],(),([)(21

2
2

2
12

2
2

2
1121  xxtsxxxfxxxfxfxfMinxF

2. [9] 5,0,0..,)(,)()],(),([)(2121221121  xxxxtsxxfxxfxfxfMinxF

3. [9]

0,12,0..

10/)2(3(50)(,10/))2(2(35)(
10/))1((25)()],(),(),([)(

2
3

2
2

2
1

21
2
3

3
3

3
2

3
13

3
331

2
2

3
2

3
12

3
3

3
232

2
1

3
11321







xxxxts

xxxxxxxfxxxxxxxf
xxxxxxxfxfxfxfMinxF

4. [9] ,3109)()],(),(),([)(543211321 xxxxxxfxfxfxfMinxF 

,47229)(543212 xxxxxxf  543213 84764)(xxxxxxf 
 s.t ,103935993 54321  xxxxx 942334 54321  xxxxx

,614993 4321  xxxx ,94221095 54321  xxxxx
.0,420533 5421  ixallxxxx

5. [9]
22..,2)1()(

)1()(,)1()()],(),(),([)(

21
2
2

2
13

2
2

2
12

2
2

2
11321





xandxtsxxxf

xxxfxxxfxfxfxfMinxF

6. [10] 2

212
2

2
2

11)1(9)(,)1()2(2)( xxxfxxxfMin

2,1,2020
0103,225 21

2
2

2
1




iix
xxxx

7.[10])](),)1()4()1()2()2(25([),(2
6

2
5

2
4

2
3

2
2

2
1

2
5

2
4

2
3

2
2

2
121 xxxxxxxxxxxffMin 

 02.. 21  xxts

,0621 xx ,0221  xx ,023 21  xx

,04)3(4
2

3  xx
 ,04)3(6

2
5  xx 60,5,1,10,,0 453621  xxxxxx

A Hybrid of Random Search and PSO for Solving Constrained Multi- 969

8. [11])](),([21 xfxfMax

32123211 252220)(,384035)(xxxxfxxxxf 
4

321
3

321
4

321 1045384035,10155.06.05.0,10210.275.12..  xxxxxxxxxts

.40002000,70004000,50003000 321  xxx
9. [11])](),([21 xfxfMin .1.0)(,25)(2121

1
2

1
2

1
131 xxxfxxxxxxf  

0,,,155.. 321
1

32
1

31   xxxxxxxts
10. [11])](),([21 xfxfMin

,30)(,0.1020)(1

312
1

5
2

211
  xxxfxxxxf

0,,,,,1,15..10.. 54321

5.0
42

1
5

2.0
12

1
43

1
1   xxxxxxxxxxxxxts

11. [11])],(),,([21 txftxfMin ,

21221
1

1
1

11 8.1408.140),(,3.28743.0775.0),(xxtxfttxxtxf  

  0),,,,1,1.. 2121
1

1
1

2
21   ttxxexexts tt

12. [11] 11

6
1

52115221.432
1

2
1

1
2

2
2

2
2

1
2

11),3(2,..2 tt
n exxttxxfttexxxettxxxxxfMin  

,1.. 22
.

2
2

1
3

1
21

1
6

2
2

1
1   tetxxtxxxts 0),,,......,,(21621 ttxxx

13. [11])3.0(27.275.4)(,)](,),(),(),([116321  xxfxfxfxfxfMax
)3.0(65.2)3.0(882.0)3.0(79.2)3.0(524.00.2)(21212  xxxf
)3.0(768.0)3.0(216.0)3.0(978.0)3.0(177.01.5)(21213  xxxf

)450)09.1(450(0025.0)(

)532)09.1(532(0018.0)(,)59)09.1(59(042.05.7)(
2
36

2
25

2
14





xxf
xxxxf

)39.1/(39.0&3,2,1,0.13.0,305)3.0(62.2)3.0(778.0

)3.0(0204.0)3.0(34.3)3.0(0186.0)3.0(0332.00.1..
2

32

1321

iii xwix
xxxts









5. Discussion on Results
For the solutions of all the constrained multi-objective optimization benchmark
functions in this paper a C++ code has been developed and compiled in Microsoft
visual C++ compiler and the data recorded as per the table given below.

Pb.
N.

Solution by Literature
Optimum (f1, f2, .., fm)

Solution using
RQPSO
Optimum (f1, f2,
.., fm)

Statistical data recorded in RQPSO
SR AFE AE SD

1. (0.13,45.13) [9] (0,0) 100 1113 0.000466 0.000318
2. (2.13,0.67) [9] (0,0) 100 42 0.000000 0.000000
3. (-123.19, 33.71,-335.74)

[9]
(18.6,24,35) 100 78 0.000000 0.000000

4. (10,2,-7) [9] (0,0,0) 100 726 0.000000 0.000000
5. (1.96,1.36,3.16) [9] (4,0,3) 100 326 0.000000 0.000000
6. (58.6,32.8) [10] (165,-621) 100 46 0.000000 0.000000
7. (42.6,29.3) [10] (-274,4) 100 7679 0.000767 0.000187
8. (-341000,198000) [11] (-34100, 233200) 100 12353 0.016781 0.048321
9. (2.157,2.157) [11] (2.15,0) 100 94 0.000000 0.000000

970 Ashok Pal and S.B.Singh

10. (-63.117,-0.985) [11] (-63.12, -1) 100 159 0.000000 0.000000
11. (45.712,45.712) [11] (45,45) 100 2312 0.000816 0.000118
12. (0.543,0.543) [11] (0.543,0.543) 100 227 0.000170 0.000292
13. (6.,5,6,6.15, -1.623,-

1.40, 2.979) [11]
(6,6.79,6,7.5,0,-
1.28)

100 1050 0.000428 0.000238

6. Conclusions
In the present paper an algorithm which is a hybrid of the standard particle swarm
optimization (SPSO) algorithm [1] and a random search technique with quadratic
approximation formula [2] named Random Search Quadratic approximation Particle
Swarm Optimization (RQPSO) algorithm has been proposed and tested on 13
constrained multi-objective test problems taken from the literature and are listed in
section 4 of this paper. Experimental results are compared with the results obtained
from the literature and it has been observed that the performance of the proposed
algorithm improved in maximum cases based on the optimal function values, average
number of function evaluations and rate of success.

References

[1] Clerc, M. and Kennedy, J., ‘The particle swarm: explosion, stability and

convergence in a multi-dimensional complex space’, IEEE Transactions on
Evolutionary Computation, 6, 58-73, 2002.

[2] Mohan C. and Shankar K., A control random search technique for global
optimization using quadratic approximation, Asia pacific journal of operational
research, 11, 93-101,1994.

[3] Wolpert, D. H. and Macready, W. G., ‘No free lunch theorems for
optimization’, IEEE Transactions on Evolutionary Computations, 1, 67-
82,1997.

[4] Mohan, C. and Deep, K., ‘Optimization Techniques’, New Age Publishers,
New Delhi, 2009.

[5] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings IEEE
International Conference Neural Networks, vol. 4, pp. 1942-1948, 1995.

[6] Shi, Y. H., Eberhart, R. C.,(1998), A Modified Particle Swarm Optimizer,
IEEE International Conference on Evolutionary Computation, Anchorage,
Alaska, May 4-9, 1998.

[7] Eberhart, R. C. and Shi, Y., ‘Comparing inertia weights and constriction
factors in particle swarm optimization’, Congress on Evolutionary
Computing, 1, 84-88, 2000.

[8] Clerc, M. The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. Proceedings, 1999 ICEC, Washington, DC, pp
1951-1957, 1999.

[9] Andrejs Zujevs, Janis Eiduks, New Decision Maker Model for Multi-obective
optimization Interactive Methods,1- 8, 2006.

A Hybrid of Random Search and PSO for Solving Constrained Multi- 971

[10] JI Chunlin, A Revised Particle Swarm optimization Approach for Multi-
objective and Multi-constraints optimization, 1-6,2005.

[11] Tyagi S., Optimization techniques and their use in solving a class of
engineering design problems, Ph.D. Thesis, University of Roorkee,
Roorkee(India),1988.

972 Ashok Pal and S.B.Singh

