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Abstract 
 

Suitable solutions for multi-objective optimization problems are 
investigated as a set of solutions in the literature, each of which 
satisfies the objectives at an acceptable level without being dominated 
by any other solution. The proposed algorithm in this paper is a hybrid 
of the particle swarm optimization algorithm [1]   and a  random search 
technique with quadratic approximation formula[2] named Random 
Search Quadratic approximation Particle Swarm Optimization 
(RQPSO) algorithm. In this proposed algorithm, a probability  having a 
certain  value provided by the user has been fixed. In every iteration, if 
the uniformly generated random number r(0,1) is less than that value , 
then the velocity vector is generated by the  standard PSO algorithm 
otherwise it is generated by random search technique with quadratic 
approximation formula [2]. The proposed algorithm is tested on 13 test 
problems taken from the literature and are listed in the paper. Results 
from the proposed algorithm are compared with the known results  
from the literature  and it has been observed   that the proposed 
algorithm improves its performance in number of cases. 
Keywords- Particle Swarm Optimization(PSO), Multi-objective 
optimization problems(MOOP) and Random Search Quadratic 
approximation Particle Swarm Optimization (RQPSO). 

 
 
1. Introduction 
An art of selecting the best alternative amongst a set of options is called an 
optimization i.e. the process to maximize the profit and minimize the losses is an 
optimization. In most of the non linear programming problems (NLPP), a global 
optimal solution rather than a local optimal solution is desired.These days with the 
growing awareness of the advantages of optimization and easy availability of 
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computers a new category of optimization techniques known as ‘heuristic based 
optimization technique’ has also introduced in optimization theory. No Free Lunch  
theorem [3]   states that the performance of all optimization algorithms for the set of 
all possible optimization functions, is equivalent. There does not exist a 
computational algorithm which can guarantee to find the global optimal solution of 
each and every optimization problem in a finite number of steps. Therefore in 
practical real life optimization problems, there is always a need for developing more 
robust numerically oriented computational techniques which could be used to solve 
different types of optimization problems arising in different real life situations[4]. 
When an optimization problem involves more than one objective function, the task of 
finding one or more optimal solutions is known as multi-objective optimization. 
Multi-objective optimization problems consist of several objectives that are necessary 
to be handled simultaneously. Such problems arise in many applications, where two 
or more, sometimes competing and/or incommensurable, objective functions have to 
be minimized/ maximized concurrently. A general formulation of a multi-objective 
optimization problem consists of a number of objectives with inequality and/or 
equality constraints. Mathematically, the problem can be expressed as follows:  
 Min/Max F(x) = [f1(x), f2(x), …, fm(x)] subject to the constraints gk(x) ≤ ck,     k = 1, 
2, …, K and   xi

(L) ≤ xi ≤ xi
(U)      i = 1, 2, …, n. where x = (x1, x2, …, xn) is solution 

vector in X, which is a set of feasible solutions. Objective vector F(x) = [f1(x), f2(x), 
…, fm(x)] maps solution vector x = (x1, x2,..,xn)   in decision space to objective space 
for m ≥ 2 i.e. the problem is to find x = (x1, x2, …, xn) which optimize  f1(x), f2(x), …, 
fm(x)   such that gk(x) ≤ ck. In general, no solution vector X exists that minimizes all 
the m objective functions simultaneously. There is no single solution to the problem 
rather, we get a set of solutions known as Pareto-optimal set/Pareto-front  i.e. the 
optimal solution is not a single point but it is a region in the design space called the 
pareto-front. 

PSO is a robust stochastic optimization technique developed by Dr. James Kennedy 
(social-psychologist in USA) and Dr. Russell Eberhart (Professor of electrical 

engineering in USA) [5] inspired by social behavior of bird flocking or fish schooling. 
Individuals in a population learn from previous experiences and the experiences of 

those around them. The direction of movement is a function of current position, 
velocity, location of individuals ‘best’ success and location of neighbors ‘best’ 

successes. Therefore, each individual in a population will gradually move towards the 
‘better’ areas of the problem space and the overall population moves towards ‘better’ 

areas of the problem space.The two basic equations in the working of the standard 
particle swarm optimization (SPSO) algorithm [6] are the velocity and position 

vectors which are given as 
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Where, ),.......,( 21 iniii xxxx  is the position of the ith particle, ),.......,( 21 iniii pppp  is 
the best position of the ith particle achieved based on its own experience so far and 
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),.......,( 21 gnggg pppp  is the position of the best particle based on the overall swarms 
experience. Shi and Eberhart [6]suggested that a value between 0.8 and 1.2 provided 
good results and Eberhart  and Shi [7] shown it decreases linearly between 0.9 to 0.4. 
 Clerc and Kennedy [8][1] used a constriction factor C  to generate the new  
velocity and observed that there can be many ways to use the constriction coefficient 
C. One of the simplest methods of using C is the following :  
 )3..())).......()(())()(()(()1( 2211 txtprctxtprctvCtv igiiii   
 
 
2. The Proposed Algorithm 
The proposed algorithm is a hybrid of the particle swarm optimization algorithm [1] 
and a  random search technique with quadratic approximation formula [2] named 
Random Search Quadratic aproximation Particle Swarm Optimization (RQPSO) 
algorithm. In this proposed algorithm, a probability having certain value provided by 
the user has been fixed. In every iteration, if the uniformly generated random number 
r(0,1) is less than that value, then the velocity vector is generated by the equation(3) 
of the PSO algorithm otherwise it is generated by equation (4) of random search 
technique with quadratic approximation formula[2] as given below: 
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where p gives the extremal point of the quadratic curve passing through the points 1b , 

2b and 3b .  
The flow of the proposed algorithm is as under.   
BEGIN:  
  Create and Initialize an n-dimensional swarm S  
              { )(txi  :  =1to S} uniformly between 0 and 1. 
                    Set constriction factor C=0.719 and 1c = 2c =2.0. 
                        For i=1 to S, 
                        For d=1 to n,   
                        Assign some value to P between 0 and 1.               
                      If r (0, 1) < P  , then   
                         generate velocity vector using equation (3) of  PSO algorithm[1], 
 else generate it using equation (4)   random search  with quadratic approximation [2].  
               Calculate particle position as )1()()1(  tvtxtx iii                
               End- for-d;  
         Compute fitness of updated position; if needed,   
        update historical information for Pi and Pg; 
     End-for-i; 
  Terminate if Pg meets problem requirements; 
END  
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3. Performance Evaluating Criteria And Parameter Settings 
AFE: Used average number of function evaluations for successful   runs. 
SR   = Success Rate = (No of successful runs (NR) /Total runs)*100 = % age of 
successful runs to total runs.  

AE    =   Average Error =  
NR

ff
n

opt  )( min

, where   NR is the number of runs, SD:  

Standard deviation of the error. 
Parameters Used: max. no. of functions evaluations(MFE) taken=50000, no. of 
runs(NR)=20,constriction factor(C) =0.719, accelerating coefficients 1c = 2c =2, error 
tolerance(  )=0.001. 
PC Configuration: Processor- Intel Dual Core, RAM-2 GB, Operating System- 
Window7, Software used- C++/Visual Studio and the random numbers are generated 
using inbuilt rand () function for the algorithm. 
 
 
4. Test Functions 
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5. Discussion on Results 
For the solutions of all the constrained multi-objective optimization benchmark 
functions in this paper a C++ code has been developed and compiled in Microsoft 
visual C++ compiler and the data recorded as per the table given below.  

Pb. 
N. 

Solution by Literature 
Optimum (f1, f2, .., fm) 

Solution using 
RQPSO 
Optimum (f1, f2, 
.., fm) 

Statistical data recorded in RQPSO 
SR AFE AE SD 

1. (0.13,45.13)  [9]  (0,0) 100 1113 0.000466 0.000318 
2. (2.13,0.67)     [9] (0,0) 100 42 0.000000 0.000000 
3. (-123.19, 33.71,-335.74) 

[9] 
(18.6,24,35) 100 78 0.000000 0.000000 

4. (10,2,-7) [9] (0,0,0) 100 726 0.000000 0.000000 
5. (1.96,1.36,3.16) [9] (4,0,3) 100 326 0.000000 0.000000 
6. (58.6,32.8)  [10] (165,-621) 100 46 0.000000 0.000000 
7. (42.6,29.3) [10]  (-274,4) 100 7679 0.000767 0.000187 
8. (-341000,198000) [11] (-34100, 233200) 100 12353 0.016781 0.048321 
9. (2.157,2.157) [11] (2.15,0) 100 94 0.000000 0.000000 
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10. (-63.117,-0.985) [11] (-63.12, -1) 100 159 0.000000 0.000000 
11. (45.712,45.712) [11] (45,45) 100 2312 0.000816 0.000118 
12. (0.543,0.543) [11] (0.543,0.543) 100 227 0.000170 0.000292 
13. (6.,5,6,6.15, -1.623,-

1.40, 2.979) [11] 
(6,6.79,6,7.5,0,-
1.28) 

100 1050 0.000428 0.000238 

 
 
6. Conclusions 
In the present paper an algorithm which is a hybrid of the standard particle swarm 
optimization (SPSO) algorithm [1] and a random search technique with quadratic 
approximation formula [2] named Random Search Quadratic approximation Particle 
Swarm Optimization (RQPSO) algorithm has been proposed and tested on 13 
constrained multi-objective test problems taken from the literature and are listed in 
section 4 of this paper. Experimental results are compared with the results obtained 
from the literature and it has been observed that the performance of the proposed 
algorithm improved in maximum cases based on the optimal function values, average 
number of function evaluations and rate of success. 
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