
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 985-990
© International Research Publications House
http://www. irphouse.com

Simulation for Sudoku Solving Logic

Karan Khatter1 and Shubham Gupta2

1 –Department of Electronics & Communication Engineering-ITM University

Huda Sector 23-A Gurgaon, Delhi (NCR), India
2, –Department of Electronics & Communication Engineering-ITM University

Karan Khatter1: email – karankhatter93@gmail.com

Abstract

In this paper, we have discussed the history of Sudoku solving along
with the new latest software simulation techniques with which we can
effectively build up strategies to solve Sudoku. Puzzles constructed
from multiple Sudoku grids are common. Although the 9×9 grid with
3×3 regions is by far the most common, many other variations
exist.The application and advantages of brain logic Sudoku’s are also
discussed very briefly in the paper.

1. Introduction
Sudoku is basically a number placement puzzle. The word Sudoku is derived from
Su-ji wa dokushin ni kagiru which means "the numbers must be single" or “the digits
are limited to one occurrence". The roots of the Sudoku puzzle[1] are originated in
Switzerland. Publication of first real real Sudoku was in 1979 by Dell Magazine under
the name ‘Numbers in Place’ and was invented by Howard Garns.
In this paper , the concept of Sudoku solving via matlab simulation is discussed with
proper evolved coding and results and discussion. Sudoku was popularized by Japan
in 1986 after it was published and given its name by the Japanese number company
Nikoli . There were two innovations introduced by Nikoli : the number of givens was
restricted to no more than 32, and puzzles became "symmetrical”. It became an
international hit in the year 2005.
The 9x9 puzzle is the most common puzzle but there are a few variants of the puzzle.

2. Variants of Sudoku Puzzle
In Mini Sudoku, basically the puzzle is played on 6x6 grid with 3x2 regions and uses
the numbers 1 through 6 .while in the case of alphabetical Sudoku[2]: It is also known
as Wordoku .It contains letters rather than the main word, through which we make a

986 Karan Khatter and Shubham Gupta

proper and suitable word accordingly. Another Variant is Duidoku, analysis of a two
player variant of Sudoku. It is played on 4x4 board.

3. Simulation of Sudoku Solving program
To test and find out a unique solution to Sudoku without using much intelligence, we
tried to focus on developing such a coding which could actually within microseconds
find a possible solution to 9X9 Sudoku .The code was simulated in matlab and as part
of intervention certain outcomes were achieved.
A Sudoku grid is a special type of latin grid with an advantage property of no repeated
values in any of the 9 blocks in 3x3 cells. It was earlier proven that the first order
formula does not mention that blocks is valid for Sudoku if and only if it is valid for
Latin squares.

The number of classic 9×9 Sudoku solution grids is approximately 6.67×1021. This is
roughly 1.2×10−6 times the number of 9×9 Latin squares .The number of different
solutions, when symmetries such as permutation, reflection as well as rotation [3] are
taken into account was non-deterministic values , although defined in range.

However, statistical techniques combined with the definition of a new type of
generator allow showing that there are approximately :

 3.10 × 1037 minimal puzzles,
 2.55 × 1025 non-essentially-equivalent minimal puzzles.

The general problem of solving Sudoku puzzles on n2 × n2 boards of n × n blocks is
known to be NP complete.
Coding which we performed is as follows:Sudoku Solver
function varargout = suduku(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @suduku_OpeningFcn, ...
 'gui_OutputFcn', @suduku_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

Simulation for Sudoku Solving Logic 987

 function D = sudoku_solver(D)

onefound = 1;
N = 0;
poss = 1:9;

while onefound
 splits = {};
 onefound = 0;
 for m = 1:9
 rowdata = nonzeros(D(m,:)');
 for n = 1:9
 E = D(m,n);
 if E ~= 0, continue, end

 coldata = nonzeros(D(:,n));
 blk = [ceil(m/3) ceil(n/3)]-1;
 blkdata = nonzeros(D(blk(1)*3+[1:3],blk(2)*3+[1:3]));

 EE = zeros(1,9);
 RCB = [rowdata; coldata; blkdata(:)];
 EE(RCB) = 1;
 Enew = find(~EE);

 if isempty(Enew)
 D = []; return;
 elseif length(Enew) == 1;
 onefound = 1;
 D(m,n) = Enew;
 rowdata = nonzeros(D(m,:)');
 else
 splits{end+1} = [m n Enew];
 end
 end
 end
end
 if isempty(splits)
 return
end

splitlength = cellfun(@length,splits);
splits = splits{find(splitlength == min(splitlength),1)};
m = splits(1); n = splits(2);

for test = 3:length(splits)

988 Karan Khatter and Shubham Gupta

 D(m,n) = splits(test);
 D0 = sudoku_solver(D);
 if ~isempty(D0)
 D = D0;
 return
 end
end
D = [];

function suduku_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);

function varargout = suduku_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function uitable1_CellEditCallback(hObject, eventdata, handles)
if (eventdata.NewData < 0 || eventdata.NewData > 9)
 tableData = get(hObject, 'data');
 tableData(eventdata.Indices(1), eventdata.Indices(2)) = eventdata.PreviousData;
 set(hObject, 'data', tableData);
end

function pbsolve_Callback(hObject, eventdata, handles)
val = get(handles.uitable1,'Data');
val2 = sudoku_solver(val);
if isempty(val2)
 val2 = cell(9);
end

set(handles.uitableAns1,'Data',val2);

function uitable1_CreateFcn(hObject, eventdata, handles)
set(hObject,'Data',zeros(9,9));

4. Results and Discussion
After the coding was implemented on matlab software , further , on simulation we
obtained the following results which are defined below in the figures A random 9x9
grid of random no. from 1 to 9 is generated on insertion of 0 at all 81 coordinate
places. Another Sudoku Solver emerges as a result to 9x9 grid when we inserted
diagonally 1 to 9 in grid and also 1 to 3 row elements 3,4,6 , and as a result random
9x9 solved sudoku emerged .

Simulation for Sudoku Solving Logic 989

Figure 1: The illustration shows the ideal simulated result with 0’s at all positions.

Figure 2 : The illustration shows the ideal simulated result with artificial human
intelligence

5. Conclusions
Conventional Strategy for Sudoku solving has been discussed in the paper along with
a brief history. More on aspect of solving via matlab approach and studying the
results and outcomes. The paper also focuses on the aspect of the capacity of
providing sensitivity, throughput and flexibility as potential aspects for Sudoku
solving, as a further scope certain reforms in the coding are being tried to get across a
10x10 grid Sudoku with 0 to 9 unique digits.

References

[1] Berthier, Denis (2007). The Hidden Logic of Sudoku. pp. 76
[2] Devlin, Keith (January 28–29, 2012). "The Numbers Game ". The Wall Street

Journal (Weekend Edition). pp. C5.
[3] Berthier, Denis (December 4, 2009). "Unbiased Statistics of a CSP – A

Controlled-Bias Generator". In Elleithy, Khaled. Innovations in Computing
Sciences and Software Engineering. pp. 165-170.

990 Karan Khatter and Shubham Gupta

