
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 11 (2014), pp. 1035-1042
© International Research Publications House
http://www. irphouse.com

SADS – Self Annihilating Data Storage system in
Cloud Storage Service

Mohan Sadasivam1, Rajeeve Dharmaraj2

1,2M.Tech Information and Communication Technology, JJCET Trichy
Anna University – Chennai, INDIA

Abstract

Personal data stored in the Cloud may contain account numbers,
passwords, notes, and other important information that could be used
and misused by a miscreant, a competitor, or a court of law. These data
are cached, copied, and archived by Cloud Service Providers (CSPs),
often without users’ authorization and control. Self-Annihilating data
mainly aims at protecting the user data’s privacy. All the data and their
copies become destructed or unreadable after a user-specified time,
without any user intervention. In addition, the decryption key is
destructed after the user-specified time. To implement the SADS
security system we are using AES and Random key Generation.
Random Key generation is the process of generating keys for
cryptography. A key is used to encrypt and decrypt whatever data is
being encrypted/decrypted.
Keywords— Active storage, Cloud computing, data privacy, self-
Annihilating(destructing) data

1. Introduction
With development of Cloud computing and popularization of mobile Internet, Cloud
services are becoming more and more important for people’s life. People are more or
less requested to submit or post some personal private information to the Cloud by the
Internet. When people do this, they subjectively hope service providers will provide
security policy to protect their data from leaking, so others people will not invade
their privacy.
 As people rely more and more on the Internet and Cloud technology, security of
their privacy takes more and more risks. On the one hand, when data is being
processed, transformed and stored by the current computer system or network,
systems or network must cache, copy or archive it. These copies are essential for

1036 Mohan Sadasivam and Rajeeve Dharmaraj

systems and the network. However, people have no knowledge about these copies and
cannot control them, so these copies may leak their privacy. On the other hand, their
privacy also can be leaked via Cloud Service Providers (CSPs’) negligence, hackers’
intrusion or some legal actions. These problems present formidable challenges to
protect people’s privacy. A pioneering study of Vanish [1] supplies a new idea for
sharing and protecting privacy. In the Vanish system, a secret key is divided and
stored in a P2P system with distributed hash tables (DHTs). With joining and exiting
of the P2P node, the system can maintain secret keys. According to characteristics of
P2P, after about eight hours the DHT will refresh every node. With Shamir Secret
Sharing Algorithm [2], when one cannot get enough parts of a key, he will not decrypt
data encrypted with this key, which means the key is destroyed.
 Some special attacks to characteristics of P2P are challenges of Vanish [3], [4],
uncontrolled in how long the key can survive is also one of the disadvantages for
Vanish. In considering these disadvantages, this paper presents a solution to
implement a self-destructing data system, or SADS, which is based on an active
storage framework [5]-[10].

 The SADS system defines two new modules, a self-destruct method object that is
associated with each secret key part and survival time parameter for each secret key
part. In this case, SADS can meet the requirements of self-destructing data with
controllable survival time while users can use this system as a general object storage
system. Our contributions are summarized as follows.

1) We focus on the related key distribution algorithm, Shamir’s algorithm [2],
which is used as the core algorithm to implement client (users) distributing keys
in the object storage system. We use these methods to implement a safety
destruct with equal divided key (Shamir Secret Shares [2]).

2) Based on active storage framework, we use an object-based storage interface to
store and manage the equally divided key. We implemented a proof-of-concept
SADS prototype.

3) Through functionality and security properties evaluation of the SADS prototype,
the results demonstrate that SADDs is practical to use and meets all the privacy-
preserving goals. The prototype system imposes reasonably low run-time
overhead.

4) SADS supports security erasing files and random encryption keys stored in a
hard disk drive (HDD) or solid state drive (SSD), respectively.

The rest of this paper is organized as follows. We review the related work in Section
II. We describe the architecture, design and implementation of SADDs in Section III.
And we conclude this paper in Section IV.

2. Related Work
2.1 Data Self-Destruct
The self-annihilating(destructing) data system in the Cloud environment should meet
the following requirements: i) How to destruct all copies of the data simultaneously

SADS – Self Annihilating Data Storage system in Cloud Storage Service 1037

and make them unreadable in case the data is out of control? A local data destruction
ap-proach will not work in the Cloud storage because the number of backups or
archives of the data that is stored in the Cloud is unknown, and some nodes preserving
the backup data have been offline. The clear data should become permanently
unreadable because of the loss of encryption key, even if an attacker can retroactively
obtain a pristine copy of that data; ii) No explicit delete actions by the user, or any
third-party storing that data; iii) No need to modify any of the stored or archived
copies of that data; iv) No use of secure hardware but support to completely erase data
in HDD and SSD, respectively.

 Tang et al. [11] proposed FADE which is built upon standard cryptographic
techniques and assuredly deletes files to make them unrecoverable to anyone upon
revocations of file access policies. Wang et al. [12] utilized the public key based
homomorphism authenticator with random mask technique to achieve a privacy-
preserving public auditing system for Cloud data storage security and uses the
technique of a bilinear aggregate signature to support handling of multiple auditing
tasks. Perlman et al. [13] present three types of assured delete: expiration time known
at file creation, on-demand deletion of individual files, and custom keys for classes of
data.

2.2 . Object-Based Storage and Active Storage
Object-based storage (OBS) [14] uses an object-based storage device (OSD) [15]
as the underlying storage device. The T10 OSD standard [15] is being developed by
the Storage Networking Industry Association (SNIA) and the INCITS T10 Technical
Committee. Each OSD consists of a CPU, network interface, ROM, RAM, and
storage device (disk or RAID subsystem) and exports a high-level data object
abstraction on the top of device block read/write interface.
 With the emergence of object-based interface, storage devices can take advantage
of the expressive interface to achieve some cooperation between application servers
and storage devices. A storage object can be a file consisting of a set of ordered
logical data blocks, or a database containing many files, or just a single application
record such as a database record of one transaction. Information about data is also
stored as objects, which can include the requirements of Quality of Service (QoS)
[16], security [17], caching, and backup. Kang et al. [18] even implemented the
object-based model enables storage class memories (SCM) devices to overcome the
disadvantages of the current interfaces and provided new features such as object-level
reliability and compression. In recent years, many systems, such as Lustre [19],
Panasas [20] and Ceph [21], using object-based technology have been developed and
deployed. Since the data can be processed in storage devices, people attempt to add
more functions into a storage device (e.g., OSD) and make it more intelligent and
refer to it as “Intelligent Storage” or “Active Storage” [5]-[10]. For instance, IDISK
[22] and SmAS Disk [23] can offload application codes to disks, but the disks respond
to I/O requests of clients passively. A stream-based programming model has been
proposed for Active Disk [24][25], but the stream is allowed to pass through only one
disklet (user-specific code).

1038 Mohan Sadasivam and Rajeeve Dharmaraj

3. Design and Implementation of Self Annihilating Data Storage
3.1 SADS Architecture
There are three parties based on the active storage framework. i) Metadata server
(MDS): MDS is responsible for user management, server management, session
management and file metadata management. ii) Application node: The application
node is a client to use storage service of the SADDs. iii) Storage node: Each storage
node is an OSD. It contains two core subsystems: key value store subsystem and
active storage object (ASO) runtime sub system. The key value store subsystem that
is based on the object storage component is used for managing objects stored in
storage node: lookup object, read/write object and so on. The object ID is used as a
key. The associated data and attribute are stored as values.

3.2 Active Storage Object
An active storage object derives from a user object and has a time-to-live (ttl) value
property. The ttl value is used to trigger the self-destruct operation. The ttl value of a
user object is infinite so that a user object will not be deleted until a user deletes it
manually. The ttl value of an active storage object is limited so an active object will
be deleted when the value of the associated policy object is true. Interfaces extended
by ActiveStorageObject class are used to manage ttl value. The create member
function needs another argument for ttl. If the argument is -1, UserObject:: create
will be called to create a user object, else, ActiveStorageObject::create will call
UserObject::create first and associate it with the self-destruct method object and a
self-destruct policy object with the ttl value. The getTTL member function is based on
the read_attr function and returns the ttl value of the active storage object. The
setTTL, addTime and decTime member function is based on the write_attr function
and can be used to modify the ttl value.

3.3 Self-Destruct Method Object
Generally, kernel code can be executed efficiently; however, a service method should
be implemented in user space with these following considerations. Many libraries
such as libc can be used by code in user space but not in kernel space. Mature tools
can be used to develop software in user space. It is much safer to debug code in user
space than in kernel space. A service method needs a long time to process a
complicated task, so implementing code of a service method in user space can take
advantage of performance of the system. The system might crash with an error in
kernel code, but this will not happen if the error occurs in code of user space. A self-
destruct method object is a service method. It needs three arguments. The lun
argument specifies the device, the pid argument specifies the partition and the obj_id
argument specifies the object to be destructed.

SADS – Self Annihilating Data Storage system in Cloud Storage Service 1039

3.4 Data Process Evaluation and Discussion

Figure 1: Function flow of SADS

 Whenever the data is processed in the cloud. The user predefined time is checked
whether the time is exceeded or not. If the time is not exceeded, the data is processed
as given in the diagram. Or else the SADS function is called so that the Self
Annihilation function is employed. All the data that are been stored in the cloud will
be destructed.

4. Conclusion
Data privacy has become increasingly important in the Cloud environment. This paper
introduced a new approach for protecting data privacy from attackers who
retroactively obtain, through legal or other means, a user’s stored data and private
decryption keys. A novel aspect of our approach is the lever-aging of the essential
properties of active storage framework based on T10 OSD standard. SADS causes
sensitive information, such as account numbers, passwords and notes to irreversibly
self-destruct, without any action on the user’s part.

References

[1] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: Increasing data

privacy with self-destructing data,” in Proc. USENIX Security Symp.,
Montreal, Canada, Aug. 2009, pp. 299-315.

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612-
613, 1979.

[3] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A. Haderman, C. J.
Rossbach, B. Waters, and E. Witchel, “Defeating vanishwith low-cost sybil
attacks against large DHEs,” in Proc. Network and Distributed System Security
Symp., 2010.

[4] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved data self-

1040 Mohan Sadasivam and Rajeeve Dharmaraj

destruction for protecting data privacy,” in Proc. Second Int. Conf.Cloud
Computing Technology and Science (CloudCom), Indianapolis, IN, USA, Dec.
2010, pp. 521-528.

[5] L. Qin and D. Feng, “Active storage framework for object-based storage
device,” in Proc. IEEE 20th Int. Conf. Advanced Information Networking and
Applications (AINA), 2006.

[6] Y. Zhang and D. Feng, “An active storage system for high performance
computing,” in Proc. 22nd Int. Conf. Advanced Information Networking and
Applications (AINA), 2008, pp. 644-651.

[7] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using object-
based devices,” in Proc. IEEE Int. Conf. Cluster Computing, 2008, pp. 472-
478.

[8] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff, 2009, Design of an
intelligent object-based storage device
[Online].Available:http://www.osc.edu/research/network_file/projects/object/p
apers/istor-tr.pdf

[9] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, W.-K.
Liao, and A. Choudhary, “Enabling active storage on parallel I/O software
stacks,” in Proc. IEEE 26th Symp. Mass Storage Systems and Technologies
(MSST), 2010.

[10] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. Kang, Z. Niu,
and Z. Tan, “Design and evaluation of oasis: An active storage framework
based on t10 osd standard,” in Proc. 27th IEEE Symp. Massive Storage
Systems and Technologies (MSST), 2011.

[11] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE: Secure overlay
cloud storage with file assured deletion,” in Proc. SecureComm, 2010.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing
for storage security in cloud computing,” in Proc. IEEE INFOCOM, 2010.

[13] R. Perlman, “File system design with assured delete,” in Proc. Third IEEE Int.
Security Storage Workshop (SISW), 2005.

[14] M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,” IEEE Commun.
Mag., vol. 41, no. 8, pp. 84-90, Aug. 2003.

[15] R. Weber, “Information Technology—SCSI object-based storage device
commands (OSD)-2,” Technical Committee T10, INCITS Std.,Rev. 5 Jan.
2009.

[16] Y.Lu,D.Du,andT.Ruwart,“QoSprovisioningframeworkforanOSD based storage
system,” in Proc. 22nd IEEE/13th NASA Goddard Conf.Mass Storage Systems
and Technologies (MSST),2005, pp. 28-35.

[17] Z. Niu, K. Zhou, D. Feng, H. Chai, W. Xiao, and C. Li, “Implementing and
evaluating security controls for an object based storage system,” in Proc. 24th
IEEE Conf. Mass Storage Systems and Technologies (MSST), 2007.

[18] Y. Kang, J. Yang, and E. L. Miller, “Object-based SCM: An efficient interface
for storage class memories,” in Proc. 27th IEEE Symp. Massive Storage
Systems and Technologies (MSST), 2011.

[19] [Online]. Available: http://www.lustre.org/

SADS – Self Annihilating Data Storage system in Cloud Storage Service 1041

[20] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka,
and B. Zhou, “Scalable performance of the panasas parallel file system,” in
Proc. 6th USENIX Conf. File and Storage Technologies (FAST), 2008.

[21] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph:
A scalable, high-performance distributed file system,” in Proc.7th Symp.
Operating Systems Design and Implementation (OSDI), 2006.

[22] K. Keeton, D. A. Patterson, and J. Hellerstein, “A case for intelligent disks
(IDISKs),” SIGMOD Rec., vol. 27, no. 3, Sep. [23] V. Dimakopoulos, A.
Kinalis, S. Mastrogiannakis, and E. Pitoura, “The smart autonomous atorage
(SMAS) system,” in Proc. IEEE Pacific Rim Conf. Communications,
Computers and Signal Processing, 2001, pp. 303-306.

[24] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle, “Active disks for large scale
data processing,” IEEE Computer, vol. 34, no. 6, pp. 68-74, Jun. 2001.

[25] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model,
algorithms and evaluation,” in Proc. 8th Conf. Architectural Support for
Programming Languages and Operating System (AS-PLOS), Oct. 1998, pp. 81-
91.

1042 Mohan Sadasivam and Rajeeve Dharmaraj

