
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 11 (2014), pp. 1079-1084
© International Research Publications House
http://www. irphouse.com

Survey of Cross-site Scripting Attack in Android Apps

Stanzein Sedol1 and Rahul Johari2

1, 2University School of Information and Communication Technology,
Guru Gobind Singh Indraprastha University,

Sector 16 - C, Dwarka, Delhi, INDIA

ABSTRACT

The recent advancement in the field of Smartphone has enabled greater
integration with the online services to users. This new environment has also
lead the developers to extend the online services to phone seamlessly. The
most popular and widely used Smartphone OS are Android and iOS. This
openness to access and download different types of online applications in our
Smartphone has often put our security at stake. Among different types of
attacks being performed on our Smartphone in order to extract our sensitive
data and information, the top ranked attacks are the Cross-site scripting (XSS)
attack and SQL injection attack as listed in Open Web Application Security
Project vulnerability list (OWASP) [1].
 In XSS attack, the attacker runs malicious code in the WebView
component of victims Smartphone. Therefore, WebView is an essential
component in both Android and iOS phones [3]. It enables the application to
display the content of online resources on phone. So in this paper, we discuss
the XSS attack, analyze their basic causes and focus on potential solutions.

Keywords-Android Security attacks;XSS attack, OWASP ;

1. INTRODUCTION
There has been a significant and tremendous growth in using Smartphone and tablets
over the past few years. Google’s Android and Apple iOS are two most widely used
platforms in the recent time taking more than 50% of the market share. Of these two,
use of Android is increasing at a large scale because of its simplicity in using and
enabling downloading the apps from Google market. And it is also convenient for the
developers to design and add their applications in the app store. More and more
people now own a Smartphone or a tablet because of the attractive features these
devices provide.[2]

1080 Stanzein Sedol and Rahul Johari

 Thousands of apps are now available both in Android Google store and Apple app
store, and the number of apps being added to the stores is still increasing at an
alarming rate. Most of these apps are based on web where they get the contents from
web servers. For doing so, they make use of the standard HTTP protocol in order to
display the contents from web and to enable users to easily access the web services
and interact with the web servers. Most of these web-based apps are designed
primarily to support a particular web application. [5]For example, the facebook
mobile app is designed particularly for facebook in order to display the facebook
content on mobile and also provide easier and better integration with facebook.
Therefore, users often prefer to use these web-based apps on their Smartphone.
 The technology that enables these web apps to perform the specific web
application task such as page rendering, JavaScript execution, etc. is called WebView.
WebView is an essential component that is used to display the contents of web
services in Smartphone and provides easy and better interaction to the users.[4][5]

1.1 About WebView
WebView is basically a class which is an extension of the Android’s View class,
which enables to display the web pages. By using WebView, the Android applications
can easily embed a browser inside them which not only allows to display the web
contents but also to interact with the web servers. There are two types of APIs
(Application Programming Interface) in WebView, Web-based APIs and the UI(User
Interface) based API. Web-based APIs are used to interact with the web-contents and
to access the web services. UI based APIs are the interactive components such as
buttons, text fields, etc.[4]
 To add WebView in our application, we can make use of the following example:
 WebView WV = new (WebView) findViewById (R.id.webview);
 WV.loadUrl("http://www.example.com");
 When the WebView is created, the application can load the web page by using
loadUrl() method when the Url String is provided. JavaScript is by default disabled in
WebView. We can enable it by setting the setJavaScriptEnabled() to true. [4][5]
 WebView WV = new (WebView) findViewById (R.id.webview);
 WebSettings wset = WV.getSettings();
 wset.setJavaScriptEnabled(true);

2. ATTACK IMPLEMENTATION
In order to launch an attack, following are the three main assumptions:[2][4]
 Before we install any app on our mobile devices, we need to grant the permission

for it to be installed completely. In most cases, the application needs to be granted
with the android.permission.INTERNET permission which makes an attacker to
launch an attack very easily.

 In order to install Android applications in the mobile devices, the user is required
to remain logged in to his Google account which is paired with the user’s phone.
So, the user has to store the login cookies in the browser which also leads to cross-
site attacks.

Survey of Cross-site Scripting Attack in Android Apps 1081

 There are also many free applications which are designed to request for the
android. Permission.READ_CONTACT permission and as the applications are
granted the permission, they might extract our contact information and other
sensitive data. Since the owner of the web content in WebView and the
application developer are not the same people, so there could be a potential threat
from malicious applications. Examples of such apps are weChat, Line, whatsApp,
etc.[6]

3. CROSS-SITE SCRIPTING ATTACK
Cross site scripting attack is also a type of vulnerability which is commonly found in
the web applications. It is an injection problem in which an attacker injects malicious
code in trusted web sites using web applications. Although, in android, the browsers
uses sandboxing mechanism which protects the user from malicious code and limits
the scripts to access only the resources available in the origin web site. But this
mechanism fails if a user downloads and executes a malicious code from a trusted site
unknowingly. So, in such case the malicious script is granted full access to all the
resources that are associated with the trusted site[4].
 Thereby executing the malicious scripts through malicious applications, an
attacker gains full access to the sensitive data and information such as cookies,
contacts, location, etc. So, in order to reduce the scope of potential threats, Android
must limit the functionality required by the applications from WebView. It has been
modeled that JavaScript injection is used for attacking the WebView component using
WebView’s loadUrl() method.[5] This method receives the argument of type string
and if the string starts with JavaScript then WebView treats the entire string as
JavaScript and executes it on behalf of the web page that is currently opened in the
WebView component. The JavaScript code has the same authorization and privilege
as that of the web page scripts and therefore can manipulate the cookies and
information on the web page. The attacks can be implemented by executing the code
that resides at the server and sending malicious scripts to the server through HttpGet
and HttpPost methods which results in stealing cookies and using the stolen cookie to
impersonate user.

3.1 Stealing Cookies
A cookie known as a web cookie or http cookie is a small piece of text stored by the
user’s browser. Cookie is used to store and maintain users authentication and to
implement navigation, possibly across multiple visits. Cookie stealing is the most
common task in cross-site scripting (XSS) attacks in which the session ID’s, Login
details of the user is gathered without user’s knowledge. These stolen cookies and
Url’s can be sent to any attacker’s server. After the attacker gathers all the cookies, he
can easily launch any attack on the user. Such situations can also give rise to
blackmailing and threatening the user with his information. Hence, this type of attack
is very dangerous because the user is only able to see the trusted site and unknowingly
his cookies are stolen. This attack of stealing cookies is shown in Figure 1.

1082 Stanzein Sedol and Rahul Johari

Figure 1. The Attacker stealing cookies from the victim’s device.[4]

3.2 Gathering sensitive information
XSS attack is also implemented to extract the sensitive data and information such as
email ids, contacts, account numbers, contacts, etc. from user’s mobile device.
Unfortunately, the user is unaware of these attacks as the user is able to see only the
trusted content on the web page. For Example, when a user installs an app, some
permissions need to be granted for the app to be installed. Then the malicious app can
access and extract all the sensitive information from the victim’s device and send
them to the attacker’s server. A very common and widely used third party app is the
facebook. These attacks are therefore very easy to launch and equally difficult to
detect. Figure 2. Demonstrates this type of attack.[4]

Figure 2. Gathering sensitive data from victim’s device.

Survey of Cross-site Scripting Attack in Android Apps 1083

4. CONCLUSION
The WebView component has enabled the Android apps to add appealing and rich
experience to the Smartphone users but at the cost of their security which is very
critical. In this paper, we have focused on the implementation of XSS on WebView
by injecting JavaScript code. The main cause of attack is unawareness of the user
while accessing a web page and installing an app, since the user only sees the
legitimate web page and unknowingly runs the malicious code on his mobile device.
So such attacks results in stealing cookies and gathering sensitive information. XSS is
therefore very easy to launch but very difficult to prevent. Our future work will focus
on developing solutions and to defend against these attacks on WebView.

5. REFERENCES

[1] Simon Roses Femerling (2012), Smartphone Apps Are Not That Smart: Insecure

Development of Apps in Android Mobiles, Vulnex Research Paper.
[2] Michael Backes, Sebastian Gerling and Philip von Styp-Rekowsky (2011), A

Local Cross-Site Scripting Attack against Android Phones, Saarland University,
Germany.

[3] Pankaj Sharma, Rahul Johari and S.S Sarma (2013), Combined Approach to
Prevent XSS Attacks and SQL injection, SPsymposium-paper.

[4] A B Bhavani (2013), Cross-site scripting Attacks on Android WebView,
International Journal of Computer Science and Network.

[5] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang and Heng Yin (2011),
Attacks on WebView in the Android System, Syracuse University, USA.

[6] Burns (2008), J. Developing Secure Mobile Applications for Android. iSEC
Partners, http://www.isecpartners. com/files/iSEC_Securing_Android_Apps.pdf.

1084 Stanzein Sedol and Rahul Johari

