
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 12 (2014), pp. 1137-1143
© International Research Publications House
http://www. irphouse.com

A Scalable Algorithm Using Up-Growth for Mining High
Utility Itemsets

C. Mamatha Devi

Sree Vidyanikethan Engineering College,
Tirupati, Andhra Pradesh

ABSTRACT

Now-a-days Patterns hidden in the databases are discovered efficiently in
several data mining tasks some among them frequent pattern mining and high
utility pattern mining. The number of useful algorithms has been proposed in
present years, there is a problem of producing a large number of candidate
itemsets for high utility itemsets. Such large number of candidate item sets
degrades the mining performance in terms of execution time and space
requirements. But this situation in the when the database contains lots of long
transaction this situation may become worse. Mining high utility itemsets by
cropping candidates based on the estimated utility values, and based on the
transaction weighted utilization values. In this paper propose a method for Up-
Growth from transactional databases.

The information of high utility itemsets is maintained in a tree based data
structure named up-tree such that candidate itemsets can be generated
efficiently with only two scans of database. first propose the strategies are
discarding global unpromising items during constructing a global up-tree is
quite effective especially when the transaction contain lots of unpromising
items, such as those in sparse data sets. our second proposed strategy for
decreasing global node utilities during overestimated utilities is to remove the
utilities of descendant nodes from their node utilities in global up-tree the
main goal of this project UP-tree based pattern mining utilizes the pattern
growth method to avoid the costly generation of a large number of candidate
sets and reduces the search space dramatically.

Keywords Frequent itemset, high utility itemset, utility mining, downword
closure property, Datamining.

1138 C. Mamatha Devi

1. Introduction
Frequent patterns are itemsets, subsequences, or substructures that appear in a data set
with frequency no less than a user-defined threshold. For example, a set of items, such
as milk and bread, that appear repeatedly combined in a transaction data set, is a
frequent itemset. Sequences that contain another sequence, such as buying first a PC,
then a digital camera, and then a memory card, if it occurs frequently in a shopping
history database, is a (frequent) sequential pattern. A substructure can refer to
different structural forms, such as subgraphs, subtrees, or sublattices, which may be
combined with itemsets or subsequences. If a substructure occurs repeatedly in a
graph database, it is called a (frequent) structural pattern. Finding frequent patterns
plays an essential role in mining associations, core relations, and many other
interesting relationships among data. Frequent pattern mining for market basket
analysis in the form of association rule mining. Market basket analysis might tell a
retailer that customers often purchase shampoo and conditioner with each other, so
putting both items on promotion at the same time would not create a significant
increase in profit, while a promotion involving just one of the items would likely
drive sales of the other

Apriori-based approach:
Apriori-based frequent substructure mining algorithms share near characteristics with
Apriori-based frequent itemset mining algorithms. the search for frequent graphs
starts with graphs of small “size”, and proceeds in a bottom-up manner. at each
iteration, the size of newly finding frequent substructures is increased by one. The
AGM algorithm uses a vertex-based candidate generation method that increases the
substructure size by one vertex at each iteration. Two size-k frequent graphs are
joined only when the two graphs have the same size-(k 1)

II. UTILITY MINING
Mining high utility itemsets from Transactional databases refers to finding the
itemsets with high profit utility of an items in transactional databases Consists of two
aspects.
 External utility Importance of different items is called external utility or unit profit
value. Internal utility
 Importance of items in transactions is called internal utility or support count.

A Scalable Algorithm Using Up-Growth for Mining High Utility Itemsets 1139

III. In this paper drawback of IHUP algorithm from transactional databases
IHUP algorithm produce too many HTWUI since the overestimated utility calculated
by TWU is too long. Such a number of HTWUIs will reduce the mining performance
in substantially in terms of execution time and memory consumption and also if
requires too many database scans for discovering the high utility itemsets. The
problem of mining high utility itemsets from D is to find the complete set of the
itemsets whose utilities are greater than or equal to min_utility. in this paper propose a
facilitate the mining performance and avoid scanning original database repeatedly,
using a compact tree structure, named UP-tree. To maintain the information of
transactions and high utility itemsets, four strategies are applied to minimize the
overestimated utilities stored in the nodes of global UP-Tree. UP-Growth algorithm
consists of three steps:1. Scan the database two times to construct a global UP-Tree
with the strategy DGU and DGN.
 Recursively generates potential high utility itemsets from global and local UP-
Tree by UP-Growth with the strategy DLU and DLN.
 Identify actual high utility itemsets from the set of PHUIs

 There are several modules involved in finding high utility item sets from
transactional databases. They are as follows
1) Data Collection
2) Calculation of TU and TWU Value
3) Construction of RTU and UP-Tree.
4) Construction of CPB for each item in Reorganized Transaction table and finding

high utility item set

3. 1 DATA COLLECTION
The data has been collected A FAST ALGORITHM FOR MINING HIGH UTILITY
ITEM SETS.

u({A}, T1)=5*1=5 item u(ip, Td) = q(ip, Td) × p(ip) Table 1:Transactional database

TID Transaction TU
T1 (A, 1)(C, 1)(D, 1) 8
T2 (A, 2)(C, 6)(E, 2)(G, 5) 27
T3 (A, 1)(B, 2)(C, 1)(D, 6)(E, 1)(F, 5) 30
T4 (B, 4)(C, 3)(D, 3)(E, 1) 20
T5 (B, 2)(C, 2)(E, 1)(G, 2) 11

Table 2. Profit table

Item A B C D E F G
Profit 5 2 1 2 3 1 1

1140 C. Mamatha Devi

4. 2 CALCULATION OFTU AND TWU VALUE:
TWU({AD})=TU(T1)+TU(T3)=8+30=38

Item A B C D E F G
TWU 65 61 96 58 88 30 38

CONSTRUCTION OF RTU AND UP-TREE
Two strategies are used for decreasing the overestimated utility of each item during
the construction of Reorganized Transaction Table and a global UP-Tree.

Strategy 1: DGU
Discarding Global Unpromising items and their actual utilities from transactions and
transaction utilities of the database. Any ordering can be used such as the
lexicographic, support or TWU order. Each new TU after cropping anti cropping
items is called reorganized transaction utility denoted as RTU.
 Reorganized Transaction table is created by using this new TU value and the
items. that the subroutine of Insert_Reorganized_Transaction is given below.
Reorganized Transaction Table is shown below

Table 2. 1:Reorganized Transactions and their RTUs

TID Reorganizationtransaction RTU
T1’ (C, 1)(A, 1)(D, 1) 8
T2’ (C, 6)(E, 2)(A, 2) 22
T3’ (C, 1)(E, 1)(A, 1)(B, 2)(D, 6) 25
T4’ (C, 3)(E, 1)(B, 4)(D, 3) 20
T5’ (C, 2)(E, 1)(B, 2) 9

Strategy 2: DGN
Decreasing Global Node utilities for the nodes of global UP-Tree by actual utilities of
descendant nodes during the construction of global UP-Tree. By applying strategy
DGN, the utilities of the nodes that are closer to the root of a global UP-Tree are
further reduced. Its subroutine is given below
UP-Tree is constructed byTwo steps:
1. Finding cropping items
2. Constructing UP-Tree

1. Finding cropping items
Cropping items are found by comparing TWU values of each items to the minimum
utility threshold value. After sorting the cropping items in the descending order
header table was constructed. A table named header table is employed to facilitate the

A Scalable Algorithm Using Up-Growth for Mining High Utility Itemsets 1141

traversal of UP-Tree. In header table, each entry records an item name, an
overestimated utility, and a link.

2. Creating UP-Tree
UP-Tree is using reorganized transactions with header table. An algorithm for
creating UP-Tree is given below the construction of UP-Tree can be performed with
two scans of the original data base. steps

First scan
1. TU of each transaction is computed.
2. TWU of each single item is also gathering.
3. Discarding global unpromising items.
4. Unpromising items are removed from the transaction and utilities are eliminated

from the TU of the transaction.
5. The remaining promising items in the transaction are sorted in the descending

order of TWU.

Second scan
Transactions are inserted into UP-Tree

1142 C. Mamatha Devi

 Conditional tree for item B by using CPB-b after applying DLN is show

Path Reorganized path supportcount Path by DGU, DGN, DLU
{AC} {C} 1 8

{BAEC} {CBE} 1 25
{BEC} {CBE} 1 20

V. CONCLUSION
This report proposed tree-based algorithm, called UP-Growth, for scalable mining
high utility itemsets from databases. It developed four effective strategies, DGU,
DGN, DLU and DLN, to reduce search space and the number of candidates for utility
mining. High utility itemsets can be identified by scaning reorganized transaction.
since there is no unpromising item in the reorganized transactions, I/O cost and
execution time can be further reduced. Experiments show that our UP-Growth
outperforms the state-of-the-art algorithm substantially and has a good scalability for
large database. In particular, our UP-Growth is over 10, 000 times faster than existing
algorithms when database contains lots of long transactions

References

[1] C. F. Ahmed, S. K. Tanbeer, B. -S. Jeong and Y. -K. Lee(2009), “Efficient tree
structures for high utility pattern mining in incremental databases, ” IEEE
Transactions on Knowledge and Data Engineering, Vol. 21, Issue 12, pp. 1708-
1721.

[2] R. Chan, Q. Yang and Y. Shen(2003), “Mining high utility itemsets, ” in Proc.
of Third IEEE Int'l Conf. on Data Mining, pp. 19-26.

[3] C. H. Cai, A. W. C. Fu, C. H. Cheng and W. W. K(1998), “Mining Association
Rules with Weighted Items, ” in Proc. of the Int’l Database Engineering and
Applications Symposium (IDEAS1998), pp.

A Scalable Algorithm Using Up-Growth for Mining High Utility Itemsets 1143

[4] A. Erwin, R. P. Gopalan and N. R. Achuthan(2008), “Efficient mining of high
utility itemsets from large datasets, ” in Proc. of PAKDD, LNA 5012, pp. 554-
561.

[5] J. Han, J. Pei, Y. Yin(2000), “Mining frequent patterns without candidate
generation, ”inProc. of the ACM-SIGMOD Int'l Conf. on Management of Data,
pp. 1-12.

[6] Y. Liu, W. Liao and A. Choudhary (2005), “A fast high utility itemsets mining
algorithm, ” in Proc. of the Utility-Based Data Mining Workshop.

[7] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S. Yu(2012), “
Efficient Algorithms for Mining High Utility Itemsets from Transactional
Databases, ” IEEE Transactions on Knowledge and Data Engineering.

