
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 14 (2014), pp. 1387-1394
© International Research Publications House
http://www. irphouse.com

A Strategic Approach to Software Testing

Keertika Singh1, Sumit Kumar Mishra2, Gaurav Shrivastava3

1, 2, 3Deptt. Of Computer Science,
Babu Banarasi Das University (BBDU) Lucknow

ABSTRACT

This paper provide a precise summery of a survey of software testing approach
and technique. This reviews some of the common approaches in the
integration testing of object – oriented program are also included. It helps in
evaluating the effectiveness of testing by providing data on different coverage
items. Different keywords were defined as a search string based on the
research questions. These include Code Coverage, Software Testing,
Prototype Testing, and Traceability. In this paper on the basis of current
researches on software testing and preexisting approach of software strategy is
described. Software is a critical element of software quality assurance and
represents the ultimate review of specification, design and code generation.
Software is tested from two different perspectives one, Internal program logic
is exercised using ‘white box or glass box’ test case design technique second,
software requirement are exercised using ‘black box’ test case design
technique. This paper provides a study of current test coverage researches
conducted by the other researches for test coverage in software testing. Testing
is very important activity in software development process. It is to examine
and modify source code. This paper deals with a significant and important
issue of testing. It is conducted basically manually as well as automated both
have their own merits and demerits. Testing automation tools enables
developers and testers to easily automate the entire process of testing in
software development. This paper includes description about automated
Testing tool such as Test Complete.

KEYWORD; SQA, Testing Technique, V&V, Testing Levels, FSM, Test
Case Design.

INTRODUCTION:
Today, every company has mechanism to ensure quality by applying solid technical
methods are measures, and performing well planed software testing technique. The

1388 Keertika Singh, Sumit Kumar Mishra, Gaurav Shrivastava

study presented here is that the latest research and issues on software testing [1].

SOFTWARE TESTING TECHNIQUE:
Fundamental Principal of Testing:
The objective of the testing is to provide a quality product to the customer [2].
1. The goal of testing is to find defects before customers find them out.
2. Exhaustive testing is not possible; program testing can only show the presence of

defects, never their absence.
3. Testing applies all through the software life cycle and is not an end of- cycle

activity.
4. Understand the reason behind the test.
5. Test the tests first.

Testing Objective:
The main objective of testing is-
1. Testing is a process of executing a program with the intent of finding an error.
2. A good test case is one that has a high probability of finding an as-yet-

undiscovered error.
3. A successful test is one that uncovers an as-yet-undiscovered error. [3]

TYPE OF TESTING APPROACH
Verification and Validation approach:
Verification refers to the set of activities that ensure that software correctly
implements a specific function. Validation refers to a different set of activities that
ensure that the software that has been built is traceable to customer requirements [4,
5].
 Verification: "Are we building the product right?"
 Validation: "Are we building the right product?

Levels of Testing:
Unit level Procedure:
Unit is the smallest part of a software system which is testable it may include code
files, classes and methods which can be tested individual for correctness. Unit is a
process of validating such small building block of a complex system, much before
testing an integrated large module or the system as a whole. Driver and/or stub
software must be developed for each unit test
 A driver is nothing more than a "main program" that accepts test case data, passes
such data to the component, and prints relevant results.
 Stubs serve to replace modules that are subordinate (called by) the component to
be tested. A stub or "dummy subprogram" uses the subordinate module's interface.

Integration Testing:
Integration is defined as a set of integration amoung component. Testing the

A Strategic Approach to Software Testing 1389

interactions between the module and interactions with other system externally is
called Integration Testing.

Type of Integration Testing

 Top-down Integration
 Bottom-up Integration
 Regression Testing
 Smoke Testing

TOP-DOWN INTEGRATION:
Top-down integration testing is an incremental approach to construction of program
structure. Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module.

BOTTOM-UP INTEGRATION:
Bottom-up integration testing, begins construction and testing with atomic modules.
Because components are integrated from the bottom up, processing required for
components subordinate to a given level is always available and the need for stubs is
eliminated.

REGRESSION TESTING:
Each time a new module is added as part of integration testing, the software changes.
These changes may cause problems. In the context of an integration test strategy,
regression testing is the re-execution of some subset of tests that have already been
conducted. Regression testing is the activity that helps to ensure that changes do not
introduce unintended behavior or additional errors. Regression testing may be
conducted manually, by re-executing a subset of all test cases. [6]

1390 Keertika Singh, Sumit Kumar Mishra, Gaurav Shrivastava

SMOKE TESTING:
Smoke testing is an integration testing approach that is commonly used when “shrink
wrapped” software products are being developed, allowing the software team to
assess its project on a frequent basis. The smoke testing approach encompasses the
following activities: [7]
1. Software components that have been translated into code are integrated into a

“build. ” A build includes all data files, libraries, reusable modules, and
engineered components.

2. A series of tests is designed to expose errors that will keep the build from properly
performing its function.

3. The build is integrated with other builds and the entire product is smoke tested
daily. The integration approach may be top down or bottom up.

A Strategic Approach to Software Testing 1391

System Testing:

Main Objective

System testing is actually a series of different tests whose
primary purpose is to fully exercise the computer-based system.

When to perform
system testing

After the integration testing

Who are going to
perform

Development team and user

Method Problem or configuration management
Input Requirement document, test plan, system test plan
Output Test report
Tool Automated tool

INTEGRATION TECHNIQUE
Common Integration Technique:
In this section, we review some of the common approaches in the integration testing
of object- oriented programs.

State Based Testing:
State-based testing techniques rely on the construction of a finite-state machine
(FSM) or state-transition diagram to represent the change of states of the program
under test. For integration testing, the construction of global FSM may become
unmanageable and subject to the state-explosion problem. Conventional techniques
for concurrent programs treat a program as static set of communicating components
and model it as deterministic or non-deterministic FSMs communicating with one
another. They systematically arrange the components into an FSM hierarchy by
reducing composite FSMs at each level by means of abstraction, and classifying
interaction statements as local and global points [8]. Alternatively, they may prune
out unnecessary or infeasible state transitions, such as by employing interface
processes [9]. Some methods even store the removed details in the edges [10]. The
resultant graphs often consist of much fewer nodes and edges than the flattened
composition of all FSMs, so that it will be feasible to traverse all nodes and edges. In
this way, the state-explosion problem can be alleviated.

Event Based Testing:
Instead of using the state-based approach, the synchronization sequence for a
concurrent pro- gram can also be viewed as relationships between pairs of
synchronization events. A merit of these approaches is that they support the analysis
of event sequencing requirements without having to cater for the states of the program
or components.
 The instance, relationships between pairs of events can be classified into three
types, namely “always valid”, “possibly valid”, and “never valid”. They represent,
respectively, situations where the first event should be, may be, and should not be
followed by the second event. The “possibly valid” relationship is further classified

1392 Keertika Singh, Sumit Kumar Mishra, Gaurav Shrivastava

into “possibly true” and “possibly false”. Suppose, for instance, it is “always valid”
that an event P is followed by an event Q, and “never valid” that event Q is followed
by an event R. We can conclude that event P followed by event R is “never valid”.
This negative relationship can be used to check the output. A coverage criterion can
be specified to cover the “always valid” and “possibly valid” situations for all event
pairs identified directly or indirectly, and test output can also be checked for non-
violation of the “never valid” situation. Common methods such as random testing and
partition testing can be used to generate test cases. Further research will be required to
study

Testing Against Formal Specification:
A lot of research has been done using formal specifications for the testing of object-
oriented programs at the class level. For example, Doong and Frankl [11] have
proposed to test behavioral equivalence of two objects in a class by applying
algebraic specification techniques [12]. However, relative little work has been
conducted for integration testing.
 Contract [13] is a formal language for specifying the behavioral dependencies and
interactions among objects of different classes. Such behavioral properties are defined
using “message- passing rules”. Testing procedures have been defined for
individual mp-rules as well as composite mp-rule. Hence, they have implemented two
automatic testing tools for integration testing using Arity/Prolog.

Introducing Automated Testing and Test Complete
Automated Testing is the automatic execution of software testing by a special
program with little or no human interaction. Automated execution guarantees that no
test action will be skipped ; it relieves tester of same boring step over and over.
Developers write unit test cases in the form of little programs, typically in a
framework such as JUnit [14].
 Test Complete provide special feature for automating test action, creating test,
defining baseline data, running test and logging test result.
 For example; “Recording Test” feature that create test visually just need to start
recording, perform all the needed action against the tested application and test
complete will automatically convert all the recorded action to a test

CONCLUSION:
1. The goal of testing is to find defects before customers find them out.
2. Testing applies all through the software life cycle and is not an end of - cycle

activity.
3. Understand the reason behind the test.
4. Test the tests first.
5 Tests develop immunity and have to be revised constantly.
6. Defects occur in convoys or clusters, and testing should focus on these convoys.
7. Automated software testing has become necessity of companies because it saves

time.

A Strategic Approach to Software Testing 1393

8. test complete is very good tool for automation.

References:

[1] Muhammad Shahid1, Suhaimi Ibrahim and Mohd Naz’ri Mahrin 2011

International Conference on Telecommunication Technology and Applications
Proc. of CSIT vol. 5 (2011)

[2] Software Testing - Principles & Practices Gopalaswamy Ramesh and
Srinivasan Desikan

[3] Myers, G., The Art of Software Testing, Wiley, 1979.
[4] Software Engineering Economics, Prentice-Hall, 1981
[5] Van Vleck, T., "Three Questions About Each Bug You Find, " ACM Software

Engineering Notes, vol. 14, no. 5, July 1989
[6] Shooman, M. L., Software Engineering, McGraw-Hill, 1983.
[7] McConnell, S., “Best Practices: Daily Build and Smoke Test”, IEEE Software,

vol. 13, no.
[8] S. Lyer and S. Ramesh. Apportioning: a technique for efficient reachability

analysis of concurrent object-oriented programs. IEEE Transactions on
Software Engineering, 27 (1)

[9] S. C. Cheung and J. Kramer. Context con- straints for compositional
reachability analysis. ACM Transactions on Software Engineering and
Methodology, 5 (4)

[10] P. V. Koppol, R. H. Carver, and K. -C. Tai. Incremental integration testing of
concurrent programs. IEEE Transactions on Software Engineering, 28
(6):607–623,

[11] R. -K. Doong and P. G. Frankl. The ASTOOT approach to testing object-
oriented programs. ACM Transactions on Software Engineering and
Methodology, 3 (2):101–130,

[12] J. A. Goguen and J. Meseguer. Unifying functional, object-oriented, and
relational pro- gramming with logical semantics. In Research Directions in
Object-Oriented Programming, B. Shriver and P. Wegner (eds.), pages 417–
477. MIT Press, Cambridge, Massachusetts, 1987.

[13] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: specifying
behavioral compositions in object-oriented systems. In Proceedings of the 5th
Annual Conference on Object- Oriented Programming Systems, Languages,
and Applications (OOPSLA ’90), ACM

[14] JUnit. URL http://junit. org.

1394 Keertika Singh, Sumit Kumar Mishra, Gaurav Shrivastava

ABOUT THE AUTHOR:
SUMIT KUMAR MISHRA received his B. Tech degree from G. B. T. U. in 2013.
Currently he is pursuing M. Tech in Software engineering from Babu Banarasi Das
University, Lucknow Uttar Pradesh, India.

KEERTIKA SINGH received her B. Tech degree from G. B. T. U. in 2012.
Currently she is pursuing M. Tech in Software engineering from Babu Banarasi Das
University, Lucknow Uttar Pradesh, India.

GAURAV KUMAR SRIVASTAVA received his B. Tech degree from G. B. T. U. in
2010.
 Currently he is pursuing M. Tech in Software engineering from Babu Banarasi
Das University, Lucknow Uttar Pradesh, India.

