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Abstract 
 

In this paper, we study digital signature algorithm (DSA) which are widely 
used in practice, and their security related issues which might occur in the 
presence of quantum computer. Security of traditional DSA relies on the 
factorization problem which is found to be susceptible in quantum ERA. We 
propose here a new approach for general purpose signature systems for 
signing multiple messages that is somewhat similar to the Merkle’s tree 
signature (MTS). The advantages of this new approach- it is simple to 
implement, and can resist the attacks that are even made with the help of 
quantum computer. We compared overall signature size of the message which 
is generated using the proposed approach with Merkle’s approach. Results 
show that our algorithm is notable when it comes to space requirement and 
run-time of algorithm, due to reduced size of the path information and the 
number of hash operations that are required for verification of the MTS public 
key respectively, making our approach more computationally efficient. 
Experimental results are presented to verify proposed approach. 
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Introduction   
Digital signatures are one of the major inventions of modern cryptography. 
Cryptographic schemas such as Digital Signature Algorithm, Diffie-Hellman on 
Elliptic Curves, Elliptic Curve Digital Signature Algorithm (ECDSA), and ElGamal 
Cryptosystem [1, 2, 3] are vital components of IT-security solutions. The problem is 
how can Alice signs a message such that Bob can verify the digital signature which is 
good enough also for legal purposes. Digital signature schemas with this feature have 
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many advantages, including smaller bandwidth for signatures on small message and 
direct integration into other schemas such as ElGamal encryption, identity-based 
public key systems or key agreement protocols. Handwritten signature appeared to be 
same for different documents, while digital signatures of the messages varies from 
message to message. At the time of sending necessary message, Signer generates 
signature using signing algorithm and in response to that Verifier uses verification 
algorithm for verification of the received message by validating received digital 
signature.  
 Signing a message m, by a Signer X so that any Verifier can verify the signature 
as Sx(m) by using a public-key cryptosystem. Signing a message m by a user X so 
that only Verifier Y can verify the signature; EY(SX(m)). Sending a message m and a 
signed hash value of m with the help of hash algorithm as: (m, SX(H(m))). Digital 
signature should not expose any information about how to generate copies of the 
signature on the behalf of the Signer.  Modified version of the ElGamal digital 
signature schema was proposed in August 1991as DSA and adopted in December 
1994. Security of the ElGamal signatures resides on the hardness of solving the 
discrete logarithm problem. Since ElGamal signature is unsecure than discrete 
logarithm, it is essential to increase the parameter size while signing the message 
using ElGamal signature algorithm which results in large signature size. 
 In 1994, Shor [4] developed quantum algorithms which can solve integer 
factorization problem and discrete logarithmic problem [5] in bounded error quantum 
polynomial time (BQP) on quantum computer. A quantum computer is the device, 
which exploits the laws of quantum physics, such as superposition and entanglement, 
to process information. The idea of a quantum computer was first proposed in 1981 
by American theoretical physicist Richard Feynman and Paul Benioff independently. 
Nobel laureate Richard Feynman pointed out that “Accurately and efficiently 
simulating quantum mechanical systems would be impossible on a classical computer, 
but that a new kind of machine, a computer itself built of quantum mechanical 
elements which obey quantum mechanical laws, might one day perform efficient 
simulations of quantum systems [6]”. 
 Post-quantum cryptography has become a topic of research since the several key 
enhancements have been made in quantum computing, such as the invention of 
quantum algorithms, and quantum computers in the last few years. Cryptosystem 
protects data from stealing or modification, and can also be used for verification of 
the users. There are some specific security requirements such as authentication, 
integrity, privacy, and non-repudiation in any application-to-application 
communication. The most complex cryptosystems which are in existence today, are 
relying on the hardness of certain mathematical problems such as integer factorization 
problem and discrete logarithm problem. These cryptosystems are not provably secure 
since the mathematical structure of the problem is not provably hard. However, the 
security schemas, which are most widely used today, have implementation based on 
these problems and remains secure over the past years due to the fact that there is no 
known classical algorithm which can solve these problems in polynomial time. 
Invention of Shor’s algorithm boosts the development of quantum computer and post-
quantum cryptosystems. Quantum computer, which deals with thousands of qubit, can 
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make current cryptosystems which rely on integer factorization problem and discrete 
logarithmic problem vulnerable. However, there are few more public-key 
cryptographic techniques for which no known efficient quantum algorithm exists, and 
which remain intact against the attacks performed with quantum computers, and 
systems which implement these cryptographic techniques are nothing but post-
quantum cryptosystems. 
 In recent years, One-Time signature (OTS) systems gaining more attention 
because of their post-quantum security and their appropriateness for compact 
implementations. OTS systems which is used to sign single message and general 
purpose signature systems for signing multiple messages, have been well-known since 
1979 [7], and have advanced from renewed development in the last decade. A 
signature system provides asymmetric message authentication. In the setup stage of 
the algorithm, it produces a public/private key-pair. The generated message signature 
can be verified using OTS public key. 
 The remaining paper is organized into five sections. Second section deliberates 
work related to OTS systems, Third Section discusses the Merkle’s Tree Signature 
(MTS) to solve problem of large public size while signing multiple messages. Fourth 
section deals with the novel approach for minimizing the signature size, which helps 
to improve the space/time trade-offs of general purpose signature systems. In the next 
section we discussed the results compared with MTS. The paper is concluded in the 
last section with some observations. 
 
 
Related Work 
Most of the One-Time Signature systems were well considered from 1990 and have 
advanced from new development over the last decade. Post-quantum signature 
schemas have not depend on number theoretic problems to ensure security and come 
with the modularity in selecting hash function, and it is not tied to any specific hash 
function as that of traditional signature. In 1979, Lamport proposed Lamport-Diffie 
One-Time Signature schema (LD-OTS) detailed in [8]. In this approach, Signer selects 
the two random values say, ‘X’ and ‘Y’ which serve as the key pair, and publishes 
H(X) and H(Y) as public keys. In the signature generation phase signer has to compute 
the hash of the message m, i.e. H(m) and for each bits of H(m), the signer then exposes 
i’th bit H(X) if i’th bit of H(m) is 0, and i’th bit H(Y) otherwise. It is impossible for 
adversary to forge such signature without inverting selected one-way function. The 
large memory requirement of the original one-time signature schema makes schema 
impractical for general use. 
 It will work for the one bit message, however, it is insecure to use same ‘X’ and 
‘Y’ key pair values for different messages, since it was found that, the one-time use of 
the signature exposes the half of the signing key once it used. The security of this 
schema depends on function ‘H’, i.e. selected one way Hash function which states that, 
it is impossible to generate two different valid messages m1 and m2 for a given 
collision resistant hash function, say H, such that H(m1) = H(m2).   Some of the hash 
functions designed to be remains secure even in presence of quantum computer, for 
example, SWIFFT in [9]. The main disadvantages of the single bit version of LD-OTS 



1484  Fajge Akshay M. and Hatkar S. S. 
 

 

schema are- the size of the signature which found to be relatively large; it is not an 
efficient to generate the message signature of very large message, since it processes 
bitwise; and it does not allow to sign multiple messages. 
 Lamport One-Time Signatures multi-bit version is used to overcome the problem 
of signing large messages. In this schema, Alice selects random values X [ X0, X1, X2, 
X3…, X255] and Y [Y0, Y1, Y2, Y3…, Y255] and publishes the set of the public key, 
such as, [H (X0), H (X1), H (X2), H (X3)…, H (X255)] for X and [H (Y0), H (Y1), H 
(Y2), H (Y3)…, H (Y255)] for Y. Alice can use these public keys to sign arbitrarily long 
message, m, efficiently by running many instances in parallel. This multi-bit version 
just help Alice to sign large messages efficiently, however, it does not overcome the 
other problems of the single bit version of the LD-OTS. 
 To overcome the problem while signing multiple messages Alice have to use 
multiple One-Time signatures. This can be achieved at the cost of some space. In case 
of the multi-bit version of the LD-OTS for single signature, Alice has to publish public 
keys of the size (256 + 256) * output size of Hash function. If Alice is using a SHA-2 
algorithm with its 512 bit variant, then required size of the public and private keys 
become 512*64 Bytes, which is nearly equal to 32KB and if Alice required 10,000 
signatures to sign multiple messages, then required size become 320MB which is much 
larger for devices having small memory. The main problem of this approach is the 
large memory requirement. The problem of the private key size can be solved by using 
pseudo random number generator by using a single input stream for generating private 
keys, however, the problem with the size of the public key remains the same. Merkle 
Tree provides the solution to the problem of large public key size by arranging the 
OTS at the leaf level of the tree. 
 Witernitz OTS (W-OTS) [10] proposed the idea to use iterating hashes and to sign 
several bits at a time. Instead of selecting two different random values, it selects only 
one value, say ‘X’ and instead of second value, it selects H(X). Alice needs a 
checksum to ensure multi-message signing capability, as an attacker can generate 
signature of remaining bit by using the signature of the given bit. Witernitz’s trick 
found to be more useful while signing larger messages. It is appropriate to combine W-
OTS with Merkle's tree authentication schema to generate efficient signature. 
 
 
Merkle Tree Signature 
Merkle in his Ph.D. dissertation [7], proposed a method to sign multiple messages, 
without the gigantic cost of storing two secret values per bit to be signed. The Merkle 
Tree signature (MTS) schema contains 2d possible number of signatures, bound 
together in a Merkle tree structure of depth d, which helps to solve key distribution 
problem of LD-OTS. It solves the problem of signing multiple messages. An MTS 
system can be used with any OTS system to avail the system with the capability of 
signing multiple messages, without initializing new keys each time, with the help of 
collision-resistant hash function. Merkle hash tree provides the solution to the 
problem of the large public keys. In this schema, OTS are arranged at the leaf level of 
the tree, while all the intermediate nodes come with the same degree (having the same 
number of the children) and holds the hashed value which is calculated from all of its 
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child nodes as shown in Fig 1. The root node of the Merkle Tree holds the MTS 
public key which serves as the public key for all its OTS, henceforth reducing the size 
of the public key from 320MB to just 64 bytes. Some one-time key generation cost is 
involved in this process which makes generation phase some of time consuming.  
 The problems with this approach is larger signature size as the signature consist of 
the all intermediate hashes in case of non-binary hash tree; and repeated hashing 
required to verify MTS public key. 

 

 
 

Fig. 1. Merkle Hash Tree 
 
 
 In Fig. 1, leaf level of the tree contains 9 OTS public keys from p1 to p9. Each 
non-leaf node has three children and contains the hash of the concatenation of the 
values of its children. The root node of the Merkle’s tree contains a public key and its 
size has been reduced to a single hash. Though, each leaf value is considered to be the 
public one, Verifier only requires the root value. Signer has to supply additional 
public information to the Verifier such as, signature number, values of all of the 
siblings from left to right of the nodes, and hashed values of nodes which are not on 
the path to the root. 
 For Example, if Signer is using p1 OTS as shown in Fig 1, then Verifier can 
regenerate the OTS public key and using the signature and path information, which 
contains the path up to the root of the tree - i.e. the values p2, p3, H (p4|| p5|| p6) and H 
(p7|| p8|| p9) as in Fig. 1, one can assure Verifier that the OTS public key is part of 
Signer's overall MTS public key. The process to calculate path information for each 
OTS is time consuming, however Signer can minimize the time at the cost of huge 
space, if the tree contains 1 million OTS. 
 Merkle Tree parameter plays vital role in creating an optimal tree such that cost 
will be minimized. The capacity of the non-leaf nodes and height of the tree gives the 
total number of the OTS that can be held in Merkle Tree. For Example, if tree height 
is ‘h’, and each non-leaf node has capacity ‘c’ then given Merkle tree can hold ch 
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OTS. Height and number of children of the each non-leaf nodes should be selected 
such that path information of the OTS for verification of MTS public key, will remain 
minimized. The number of the siblings of the nodes in a path from OTS to the root of 
the Merkle tree having height of the tree ‘h’, and capacity of each non-leaf node is ‘c’, 
is found to be  h (c-1). The Main problem with Merkle’s idea is to traverse the tree 
from leaf node to root node. While signing the message, Signer has to provide path 
verification for each OTS and for that, Signer has to remind all intermediate hash 
values up to the root node. In Merkle’s approach, algorithm required O(h) hash 
evaluations for each OTS verification with O(h2) space requirement for storing 
intermediate hash values. In [11] Markus Jakobsson et al, presented a modified 
version of Merkle’s scheduling algorithm to accomplish a space-time trade-off by 
increasing speed for signing operation by random factor of ‘a’ as compared to original 
Merkle’s algorithm, at the cost of 2a more space. Michael Szydlo exhibits new 
alternative approach which is found to be space efficient [12], but provides no trade 
off.  This paper proposes a novel schema for generating MTS public key and path 
information for each OTS so that space and time required for signing multiple 
messages will dramatically get reduced. 
 
 
Proposed Schema 
In this section we describe the new approach compared to original Merkle’s algorithm 
and the main difference will be in how the MTS public key is generated and how the 
verification path of each OTS is calculated. Similar to Merkle’s Tree our approach is 
also capable of signing multiple messages, however it will require less space and time 
for signing messages, owing to reduced number of sibling information included in the 
verification path of OTS. With the help of cryptographic components: a one-way 
function, and one-time signature system, we have successfully verified our proposed 
idea. Our tree has height, h=1, having all OTS residing at level 1 of the tree as shown 
in Fig. 2. 

 

 
 

Fig. 2. Proposed Approach 
 
 In Fig. 2, level first is itself a leaf level of the tree containing 9 OTS public keys 
from p1 to p9. Root node contains the MTS public key for all one-time signatures 
public keys. MTS public key is calculated by taking hash of the addition of all the 
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OTS public keys. Verifier requires the root value and Signer has to supply additional 
public information to the Verifier which is nothing but the sum of all the OTS public 
key minus the public key of the current one-time signature. For Example, suppose 
summation of all the OTS public key is Z, i.e. Z = (p1+ p2 + p3 + p4 + p5 + p6+ p7 + p8 
+ p9); then, H(Z) serves as the MTS public key. We presented below the more 
efficient and simple algorithm to generate MTS public key. 
 
Algorithm 1: Generation of Z and MTS public key 
Input: Required number of OTS_public_keys, name_of_hash_algorithm 
Output: Z, mts_pub_key 
Step I: OTS_public_keys=one-time signature generation system(‘PASSWORD’, ‘no. 
of OTS keys required’) 
Step II: Z=sum(OTS_public _keys) 
Step III: mts_pub_key=HASH(Z, name_of_hash_algorithm) 
 
 In Algorithm I, Step I describe the setup stage of OTS system for the generation of 
required number of OTS public keys and return the set of all OTS public keys 
generated depends on the one-time signature system used such as LD-OTS, W-OTS, 
and LDWM one-time signature system. In Step II, sum of all the OTS public keys is 
calculated and stored in Z which is of type big integer. MTS public key is calculated 
as a hash of Z using the hash algorithm specified at the time of input. Algorithm 2 
describes the procedure while signing the message and how the message signature is 
generated. While signing the first message using a p1-OTS public key as shown in 
Fig. 2, similar to Merkle’s algorithm, Signer has to provide some extra information, 
here, we are providing value Z-p1 as the path verification data. Verifier, on the other 
hand, calculate the public key p1 for the received message and perform verification of 
the MTS public key by adding it to the provided path information data (Z-p1) 
followed by hash operation. 
 
Algorithm 2: Generation of message signature 
Input: Message m 
Output: message_signature 
Step I: signature=message_sign_generator(m,OTS_pubkey) 
Step II: pathinfo=Z-OTS_pubkey,  
Step III: message_signature={algo_info,pathinfo,signature} 
 
 In Algorithm II, Message signature is calculated by using one-time signature and 
OTS path information is calculated for verification of MTS public key respectively in 
Step I and Step II. Original message signature with some extra information which 
Signer has to publish is combined with message signature and provided to verify MTS 
public key with the help of recalculated OTS public key and path information which 
is provided at the time of signing. 
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Experimental Results 
In order to validate the proposal, we have used the SHA-256 algorithm for hashing 
operation and LDWM one-time signature, and tested the proposed system in 
comparison to the Merkle’s idea. We have implemented the LDWM schema using 
Merkle’s idea and using proposed schema, considering security analysis made in [13], 
in JAVA with multiple message signing capability and comparison of these systems is 
carried out on the basis of the message signature size. Table 1 provides results of 
comparison between Merkle’s approach and proposed approach on the basis of 
signature size generated by a general purpose signature system which implements 
LDWM signature schema LDWM_SHA256_M20_W4 system for signing the 
message of size 1KB. 
 
 
Results 

 
Table 1 

 
No. of 
OTS 

Size of Signature1 For 
[bytes] Merkle’s Approach 

Merkle’s Proposed   
Approach Approach C2 N3 

16 3074 2746 4 6 
36 3334 2747 6 10 
64 3594 2747 8 14 
100 3855 2747 10 18 
225 4505 2747 15 28 
529 5545 2747 23 44 

1000 6715 2748 32 62 
5041 11785 2748 71 140 
10000 15,556 2749 100 198 

100489 43,766 2749 317 632 
1It includes algorithm info, path information for OTS, and signature of the message. 
2Degree of non-leaf node. 
3Number of siblings involved in path information. 
 
 In Table 1, for example purpose, we have provided the results of Merkle’s 
approach with the help of the hash tree of height 2, however it is not standard height. 
Fig. 3 shows the how the selection of height and capacity of non-leaf node affect the 
involvement of siblings in the formation of path information of OTS which directly 
affects the overall signature size of the message.  Fig. 3 shows the involvement of N 
number of siblings in path information of OTS for different hash tree height h with 
varying degree of non-leaf node from 2 to 200. General purpose signature systems 
implemented using Merkle’s approach, for greater multi-message signing capability, 
generally end up with the large message signature, due to more number of N 
involvement in path information of each OTS. 
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Fig. 3. N vs. C for different height 
 
 
 However, in proposed approach, instead of path information of each intermediate 
nodes, we have provided single information generated from leaves which result much 
better performance as compared to Merkle’s approach.  
 
 
Conclusion 
Researchers are looking for secure, efficient, and quantum resistant schemas, which 
fulfil the need of security even in quantum era. In hash-based signature system, the 
size of cryptographic parameter reducing the practicability of the system, 
nevertheless, continuous development in the field of hash-based signature promises 
for secure quantum resistant general purpose signature system. Recent development in 
quantum computing can threaten the conventional cryptosystems, due to the ability of 
quantum algorithms to use quantum parallelism. It is better to go for mathematically 
proved assumption rather using unproven mathematical problems such as integer 
factorization and discrete logarithm problem.  
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