
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 15 (2014), pp.
© International Research Publications House
http://www. irphouse.com

A Novel Approach for Signing Multiple Messages: Hash-
Based Signature

Fajge Akshay M.1 and Hatkar S. S.2

1M.Tech. Student, CSE Dept., SGGS IE&T, Nanded, Maharashtra-431606
2CSE Dept., SGGS IE&T, Nanded, Maharashtra-431606

Abstract

In this paper, we study digital signature algorithm (DSA) which are widely
used in practice, and their security related issues which might occur in the
presence of quantum computer. Security of traditional DSA relies on the
factorization problem which is found to be susceptible in quantum ERA. We
propose here a new approach for general purpose signature systems for
signing multiple messages that is somewhat similar to the Merkle’s tree
signature (MTS). The advantages of this new approach- it is simple to
implement, and can resist the attacks that are even made with the help of
quantum computer. We compared overall signature size of the message which
is generated using the proposed approach with Merkle’s approach. Results
show that our algorithm is notable when it comes to space requirement and
run-time of algorithm, due to reduced size of the path information and the
number of hash operations that are required for verification of the MTS public
key respectively, making our approach more computationally efficient.
Experimental results are presented to verify proposed approach.

Keywords: asymmetric key; digital signature algorithm; hash-based
cryptography; merkle tree signature; post-quantum cryptography; quantum
computing;

Introduction
Digital signatures are one of the major inventions of modern cryptography.
Cryptographic schemas such as Digital Signature Algorithm, Diffie-Hellman on
Elliptic Curves, Elliptic Curve Digital Signature Algorithm (ECDSA), and ElGamal
Cryptosystem [1, 2, 3] are vital components of IT-security solutions. The problem is
how can Alice signs a message such that Bob can verify the digital signature which is
good enough also for legal purposes. Digital signature schemas with this feature have

1482 Fajge Akshay M. and Hatkar S. S.

many advantages, including smaller bandwidth for signatures on small message and
direct integration into other schemas such as ElGamal encryption, identity-based
public key systems or key agreement protocols. Handwritten signature appeared to be
same for different documents, while digital signatures of the messages varies from
message to message. At the time of sending necessary message, Signer generates
signature using signing algorithm and in response to that Verifier uses verification
algorithm for verification of the received message by validating received digital
signature.
 Signing a message m, by a Signer X so that any Verifier can verify the signature
as Sx(m) by using a public-key cryptosystem. Signing a message m by a user X so
that only Verifier Y can verify the signature; EY(SX(m)). Sending a message m and a
signed hash value of m with the help of hash algorithm as: (m, SX(H(m))). Digital
signature should not expose any information about how to generate copies of the
signature on the behalf of the Signer. Modified version of the ElGamal digital
signature schema was proposed in August 1991as DSA and adopted in December
1994. Security of the ElGamal signatures resides on the hardness of solving the
discrete logarithm problem. Since ElGamal signature is unsecure than discrete
logarithm, it is essential to increase the parameter size while signing the message
using ElGamal signature algorithm which results in large signature size.
 In 1994, Shor [4] developed quantum algorithms which can solve integer
factorization problem and discrete logarithmic problem [5] in bounded error quantum
polynomial time (BQP) on quantum computer. A quantum computer is the device,
which exploits the laws of quantum physics, such as superposition and entanglement,
to process information. The idea of a quantum computer was first proposed in 1981
by American theoretical physicist Richard Feynman and Paul Benioff independently.
Nobel laureate Richard Feynman pointed out that “Accurately and efficiently
simulating quantum mechanical systems would be impossible on a classical computer,
but that a new kind of machine, a computer itself built of quantum mechanical
elements which obey quantum mechanical laws, might one day perform efficient
simulations of quantum systems [6]”.
 Post-quantum cryptography has become a topic of research since the several key
enhancements have been made in quantum computing, such as the invention of
quantum algorithms, and quantum computers in the last few years. Cryptosystem
protects data from stealing or modification, and can also be used for verification of
the users. There are some specific security requirements such as authentication,
integrity, privacy, and non-repudiation in any application-to-application
communication. The most complex cryptosystems which are in existence today, are
relying on the hardness of certain mathematical problems such as integer factorization
problem and discrete logarithm problem. These cryptosystems are not provably secure
since the mathematical structure of the problem is not provably hard. However, the
security schemas, which are most widely used today, have implementation based on
these problems and remains secure over the past years due to the fact that there is no
known classical algorithm which can solve these problems in polynomial time.
Invention of Shor’s algorithm boosts the development of quantum computer and post-
quantum cryptosystems. Quantum computer, which deals with thousands of qubit, can

A Novel Approach for Signing Multiple Messages: Hash-Based Signature 1483

make current cryptosystems which rely on integer factorization problem and discrete
logarithmic problem vulnerable. However, there are few more public-key
cryptographic techniques for which no known efficient quantum algorithm exists, and
which remain intact against the attacks performed with quantum computers, and
systems which implement these cryptographic techniques are nothing but post-
quantum cryptosystems.
 In recent years, One-Time signature (OTS) systems gaining more attention
because of their post-quantum security and their appropriateness for compact
implementations. OTS systems which is used to sign single message and general
purpose signature systems for signing multiple messages, have been well-known since
1979 [7], and have advanced from renewed development in the last decade. A
signature system provides asymmetric message authentication. In the setup stage of
the algorithm, it produces a public/private key-pair. The generated message signature
can be verified using OTS public key.
 The remaining paper is organized into five sections. Second section deliberates
work related to OTS systems, Third Section discusses the Merkle’s Tree Signature
(MTS) to solve problem of large public size while signing multiple messages. Fourth
section deals with the novel approach for minimizing the signature size, which helps
to improve the space/time trade-offs of general purpose signature systems. In the next
section we discussed the results compared with MTS. The paper is concluded in the
last section with some observations.

Related Work
Most of the One-Time Signature systems were well considered from 1990 and have
advanced from new development over the last decade. Post-quantum signature
schemas have not depend on number theoretic problems to ensure security and come
with the modularity in selecting hash function, and it is not tied to any specific hash
function as that of traditional signature. In 1979, Lamport proposed Lamport-Diffie
One-Time Signature schema (LD-OTS) detailed in [8]. In this approach, Signer selects
the two random values say, ‘X’ and ‘Y’ which serve as the key pair, and publishes
H(X) and H(Y) as public keys. In the signature generation phase signer has to compute
the hash of the message m, i.e. H(m) and for each bits of H(m), the signer then exposes
i’th bit H(X) if i’th bit of H(m) is 0, and i’th bit H(Y) otherwise. It is impossible for
adversary to forge such signature without inverting selected one-way function. The
large memory requirement of the original one-time signature schema makes schema
impractical for general use.
 It will work for the one bit message, however, it is insecure to use same ‘X’ and
‘Y’ key pair values for different messages, since it was found that, the one-time use of
the signature exposes the half of the signing key once it used. The security of this
schema depends on function ‘H’, i.e. selected one way Hash function which states that,
it is impossible to generate two different valid messages m1 and m2 for a given
collision resistant hash function, say H, such that H(m1) = H(m2). Some of the hash
functions designed to be remains secure even in presence of quantum computer, for
example, SWIFFT in [9]. The main disadvantages of the single bit version of LD-OTS

1484 Fajge Akshay M. and Hatkar S. S.

schema are- the size of the signature which found to be relatively large; it is not an
efficient to generate the message signature of very large message, since it processes
bitwise; and it does not allow to sign multiple messages.
 Lamport One-Time Signatures multi-bit version is used to overcome the problem
of signing large messages. In this schema, Alice selects random values X [X0, X1, X2,
X3…, X255] and Y [Y0, Y1, Y2, Y3…, Y255] and publishes the set of the public key,
such as, [H (X0), H (X1), H (X2), H (X3)…, H (X255)] for X and [H (Y0), H (Y1), H
(Y2), H (Y3)…, H (Y255)] for Y. Alice can use these public keys to sign arbitrarily long
message, m, efficiently by running many instances in parallel. This multi-bit version
just help Alice to sign large messages efficiently, however, it does not overcome the
other problems of the single bit version of the LD-OTS.
 To overcome the problem while signing multiple messages Alice have to use
multiple One-Time signatures. This can be achieved at the cost of some space. In case
of the multi-bit version of the LD-OTS for single signature, Alice has to publish public
keys of the size (256 + 256) * output size of Hash function. If Alice is using a SHA-2
algorithm with its 512 bit variant, then required size of the public and private keys
become 512*64 Bytes, which is nearly equal to 32KB and if Alice required 10,000
signatures to sign multiple messages, then required size become 320MB which is much
larger for devices having small memory. The main problem of this approach is the
large memory requirement. The problem of the private key size can be solved by using
pseudo random number generator by using a single input stream for generating private
keys, however, the problem with the size of the public key remains the same. Merkle
Tree provides the solution to the problem of large public key size by arranging the
OTS at the leaf level of the tree.
 Witernitz OTS (W-OTS) [10] proposed the idea to use iterating hashes and to sign
several bits at a time. Instead of selecting two different random values, it selects only
one value, say ‘X’ and instead of second value, it selects H(X). Alice needs a
checksum to ensure multi-message signing capability, as an attacker can generate
signature of remaining bit by using the signature of the given bit. Witernitz’s trick
found to be more useful while signing larger messages. It is appropriate to combine W-
OTS with Merkle's tree authentication schema to generate efficient signature.

Merkle Tree Signature
Merkle in his Ph.D. dissertation [7], proposed a method to sign multiple messages,
without the gigantic cost of storing two secret values per bit to be signed. The Merkle
Tree signature (MTS) schema contains 2d possible number of signatures, bound
together in a Merkle tree structure of depth d, which helps to solve key distribution
problem of LD-OTS. It solves the problem of signing multiple messages. An MTS
system can be used with any OTS system to avail the system with the capability of
signing multiple messages, without initializing new keys each time, with the help of
collision-resistant hash function. Merkle hash tree provides the solution to the
problem of the large public keys. In this schema, OTS are arranged at the leaf level of
the tree, while all the intermediate nodes come with the same degree (having the same
number of the children) and holds the hashed value which is calculated from all of its

A Novel Approach for Signing Multiple Messages: Hash-Based Signature 1485

child nodes as shown in Fig 1. The root node of the Merkle Tree holds the MTS
public key which serves as the public key for all its OTS, henceforth reducing the size
of the public key from 320MB to just 64 bytes. Some one-time key generation cost is
involved in this process which makes generation phase some of time consuming.
 The problems with this approach is larger signature size as the signature consist of
the all intermediate hashes in case of non-binary hash tree; and repeated hashing
required to verify MTS public key.

Fig. 1. Merkle Hash Tree

 In Fig. 1, leaf level of the tree contains 9 OTS public keys from p1 to p9. Each
non-leaf node has three children and contains the hash of the concatenation of the
values of its children. The root node of the Merkle’s tree contains a public key and its
size has been reduced to a single hash. Though, each leaf value is considered to be the
public one, Verifier only requires the root value. Signer has to supply additional
public information to the Verifier such as, signature number, values of all of the
siblings from left to right of the nodes, and hashed values of nodes which are not on
the path to the root.
 For Example, if Signer is using p1 OTS as shown in Fig 1, then Verifier can
regenerate the OTS public key and using the signature and path information, which
contains the path up to the root of the tree - i.e. the values p2, p3, H (p4|| p5|| p6) and H
(p7|| p8|| p9) as in Fig. 1, one can assure Verifier that the OTS public key is part of
Signer's overall MTS public key. The process to calculate path information for each
OTS is time consuming, however Signer can minimize the time at the cost of huge
space, if the tree contains 1 million OTS.
 Merkle Tree parameter plays vital role in creating an optimal tree such that cost
will be minimized. The capacity of the non-leaf nodes and height of the tree gives the
total number of the OTS that can be held in Merkle Tree. For Example, if tree height
is ‘h’, and each non-leaf node has capacity ‘c’ then given Merkle tree can hold ch

1486 Fajge Akshay M. and Hatkar S. S.

OTS. Height and number of children of the each non-leaf nodes should be selected
such that path information of the OTS for verification of MTS public key, will remain
minimized. The number of the siblings of the nodes in a path from OTS to the root of
the Merkle tree having height of the tree ‘h’, and capacity of each non-leaf node is ‘c’,
is found to be h (c-1). The Main problem with Merkle’s idea is to traverse the tree
from leaf node to root node. While signing the message, Signer has to provide path
verification for each OTS and for that, Signer has to remind all intermediate hash
values up to the root node. In Merkle’s approach, algorithm required O(h) hash
evaluations for each OTS verification with O(h2) space requirement for storing
intermediate hash values. In [11] Markus Jakobsson et al, presented a modified
version of Merkle’s scheduling algorithm to accomplish a space-time trade-off by
increasing speed for signing operation by random factor of ‘a’ as compared to original
Merkle’s algorithm, at the cost of 2a more space. Michael Szydlo exhibits new
alternative approach which is found to be space efficient [12], but provides no trade
off. This paper proposes a novel schema for generating MTS public key and path
information for each OTS so that space and time required for signing multiple
messages will dramatically get reduced.

Proposed Schema
In this section we describe the new approach compared to original Merkle’s algorithm
and the main difference will be in how the MTS public key is generated and how the
verification path of each OTS is calculated. Similar to Merkle’s Tree our approach is
also capable of signing multiple messages, however it will require less space and time
for signing messages, owing to reduced number of sibling information included in the
verification path of OTS. With the help of cryptographic components: a one-way
function, and one-time signature system, we have successfully verified our proposed
idea. Our tree has height, h=1, having all OTS residing at level 1 of the tree as shown
in Fig. 2.

Fig. 2. Proposed Approach

 In Fig. 2, level first is itself a leaf level of the tree containing 9 OTS public keys
from p1 to p9. Root node contains the MTS public key for all one-time signatures
public keys. MTS public key is calculated by taking hash of the addition of all the

A Novel Approach for Signing Multiple Messages: Hash-Based Signature 1487

OTS public keys. Verifier requires the root value and Signer has to supply additional
public information to the Verifier which is nothing but the sum of all the OTS public
key minus the public key of the current one-time signature. For Example, suppose
summation of all the OTS public key is Z, i.e. Z = (p1+ p2 + p3 + p4 + p5 + p6+ p7 + p8
+ p9); then, H(Z) serves as the MTS public key. We presented below the more
efficient and simple algorithm to generate MTS public key.

Algorithm 1: Generation of Z and MTS public key
Input: Required number of OTS_public_keys, name_of_hash_algorithm
Output: Z, mts_pub_key
Step I: OTS_public_keys=one-time signature generation system(‘PASSWORD’, ‘no.
of OTS keys required’)
Step II: Z=sum(OTS_public _keys)
Step III: mts_pub_key=HASH(Z, name_of_hash_algorithm)

 In Algorithm I, Step I describe the setup stage of OTS system for the generation of
required number of OTS public keys and return the set of all OTS public keys
generated depends on the one-time signature system used such as LD-OTS, W-OTS,
and LDWM one-time signature system. In Step II, sum of all the OTS public keys is
calculated and stored in Z which is of type big integer. MTS public key is calculated
as a hash of Z using the hash algorithm specified at the time of input. Algorithm 2
describes the procedure while signing the message and how the message signature is
generated. While signing the first message using a p1-OTS public key as shown in
Fig. 2, similar to Merkle’s algorithm, Signer has to provide some extra information,
here, we are providing value Z-p1 as the path verification data. Verifier, on the other
hand, calculate the public key p1 for the received message and perform verification of
the MTS public key by adding it to the provided path information data (Z-p1)
followed by hash operation.

Algorithm 2: Generation of message signature
Input: Message m
Output: message_signature
Step I: signature=message_sign_generator(m,OTS_pubkey)
Step II: pathinfo=Z-OTS_pubkey,
Step III: message_signature={algo_info,pathinfo,signature}

 In Algorithm II, Message signature is calculated by using one-time signature and
OTS path information is calculated for verification of MTS public key respectively in
Step I and Step II. Original message signature with some extra information which
Signer has to publish is combined with message signature and provided to verify MTS
public key with the help of recalculated OTS public key and path information which
is provided at the time of signing.

1488 Fajge Akshay M. and Hatkar S. S.

Experimental Results
In order to validate the proposal, we have used the SHA-256 algorithm for hashing
operation and LDWM one-time signature, and tested the proposed system in
comparison to the Merkle’s idea. We have implemented the LDWM schema using
Merkle’s idea and using proposed schema, considering security analysis made in [13],
in JAVA with multiple message signing capability and comparison of these systems is
carried out on the basis of the message signature size. Table 1 provides results of
comparison between Merkle’s approach and proposed approach on the basis of
signature size generated by a general purpose signature system which implements
LDWM signature schema LDWM_SHA256_M20_W4 system for signing the
message of size 1KB.

Results

Table 1

No. of
OTS

Size of Signature1 For
[bytes] Merkle’s Approach

Merkle’s Proposed
Approach Approach C2 N3

16 3074 2746 4 6
36 3334 2747 6 10
64 3594 2747 8 14
100 3855 2747 10 18
225 4505 2747 15 28
529 5545 2747 23 44

1000 6715 2748 32 62
5041 11785 2748 71 140
10000 15,556 2749 100 198

100489 43,766 2749 317 632
1It includes algorithm info, path information for OTS, and signature of the message.
2Degree of non-leaf node.
3Number of siblings involved in path information.

 In Table 1, for example purpose, we have provided the results of Merkle’s
approach with the help of the hash tree of height 2, however it is not standard height.
Fig. 3 shows the how the selection of height and capacity of non-leaf node affect the
involvement of siblings in the formation of path information of OTS which directly
affects the overall signature size of the message. Fig. 3 shows the involvement of N
number of siblings in path information of OTS for different hash tree height h with
varying degree of non-leaf node from 2 to 200. General purpose signature systems
implemented using Merkle’s approach, for greater multi-message signing capability,
generally end up with the large message signature, due to more number of N
involvement in path information of each OTS.

A Novel Approach for Signing Multiple Messages: Hash-Based Signature 1489

Fig. 3. N vs. C for different height

 However, in proposed approach, instead of path information of each intermediate
nodes, we have provided single information generated from leaves which result much
better performance as compared to Merkle’s approach.

Conclusion
Researchers are looking for secure, efficient, and quantum resistant schemas, which
fulfil the need of security even in quantum era. In hash-based signature system, the
size of cryptographic parameter reducing the practicability of the system,
nevertheless, continuous development in the field of hash-based signature promises
for secure quantum resistant general purpose signature system. Recent development in
quantum computing can threaten the conventional cryptosystems, due to the ability of
quantum algorithms to use quantum parallelism. It is better to go for mathematically
proved assumption rather using unproven mathematical problems such as integer
factorization and discrete logarithm problem.

1490 Fajge Akshay M. and Hatkar S. S.

References

[1] R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public key cryptosystems, Communications of the ACM, vol.
21, pp. 120-126, Feb.1978.

[2] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory IT-22, 1976, no. 6, pp. 644–654.

[3] Taher ElGamal, A public key cryptosystem and a signature schema based on
discrete logarithms, IEEE Transactions on Information Theory IT-31 1985, no.
4, pp. 469–472.

[4] Peter W. Shor, Algorithms for quantum computation: Discrete logarithms and
factoring, in Proceedings of the 35th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society Press, 1994, pp. 124–134.

[5] Victor Shoup, Lower bounds for discrete logarithms and related problems, in
Proc. Eurocrypt’97, Lecture Notes in Computer Science, Springer-Verlag,
1997, pp. 256–266, vol. 1233.

[6] R. P. Feynman, Simulating Physics with Computers, International Journal of
Theoretical Physics, vol. 21, pp. 467–488, 1982.

[7] R. Merkle, Secrecy, authentication, and public key systems, Stanford Univ.,
1979.

[8] L. Lamport, Constructing digital signatures from a one way function, SRI
International Computer Science Laboratory, Technical report, SRI-CSL-98,
1979.

[9] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, Swifft: A modest
proposal for the hashing, in FSE, 2008, pages 54-72.

[10] R. C. Merkle, A certified digital signature, in Proceedings of Advances in
Cryptology – CRYPTO '89, vol. 435 of LNCS, pages 218-238.Springer, 1989.

[11] Markus Jakobsson and Michael Szydlo et al, Fractal Merkle Tree
Representation and Traversal, RSA-CT ’03.

[12] Michael Szydlo, Merkle Tree Traversal in Log Space and Time, Eurocrypt
2004.

[13] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hulsing, and Markus
Ruckert. On the security of the Winternitz one-time signature schema, In A.
Nitaj and D. Pointcheval, editors, Africacrypt 2011.

