
International Journal of Information & Computation Technology. 
ISSN 0974-2239 Volume 4, Number 16 (2014), pp. 1611-1624 
© International Research Publications House 
http://www. irphouse.com 

 

 
 

Analysis of Improved Neural MLFQ Scheduler 
 
 

Deepali Maste1, Dr. Leena Ragha2, Prof Nilesh Marathe3 
 

1, 2, 3Computer Department, 1, 2, 3Ramrao Adik Institute of technology,  
Nerul, Mumbai 

1deepali. maste@gmail. com 2leena. ragha@gmail. com 
3nilesh. marathe@rait. ac. in 

 
Abstract 

 
The scheduling task becomes more difficult when a feasible schedule does not 
exist and the goal is to minimize some measure of delinquency, often termed 
as tardiness. Tardiness of an individual job under a given schedule is defined 
as the amount of time by which the job finishes after its prescribed deadline, 
and is considered to be zero if the job finishes on or before the deadline. 
Assuming there are runnable processes, a process should always be running. If 
there are more processes than processors in a system, some processes will not 
always be running. These processes are waiting to run. Deciding which 
process runs next and for what amount of time when given a set of runnable 
processes, is the fundamental decision that scheduler must take. There is no 
universal “best” scheduling algorithm, and many operating systems use 
extended or combinations of the scheduling algorithms. In this work we use 
Neural Network technique to learn the execution behavior of known processes 
to minimize average turnaround time in MLFQ scheduling. By 
experimentation we can conclude that predictive quantum scheduling could 
reduce average turnaround time in the range of 4% to 30% in average. If 
processes with large variations in parameters scheduled together then it can be 
more helpful in prediction of time quantum by Neural Network. At present 
Operating System has not used process’s execution behavior history to 
schedule processes so we find our work interesting in that context.  
 
Keywords—average turnaround time, Recurrent Neural Network, Process 
Scheduling, MLFQ scheduling, dynamic time quantum, process attributes, 
standard deviation 

 
 
I. Introduction 
Scheduling  
User interactivity and process completion time are major concern in operating 



1612  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

systems such as Microsoft Windows and Linux [1]. The most popular scheduling 
algorithms that adhere to user interactivity are priority based [2]. In 
multiprogramming systems, when there is more than one ready processes, the 
operating system must decide which one to activate. The decision is made by the part 
of the operating system called the scheduler, using a scheduling algorithm. The 
scheduler is concerned with deciding policy, not providing a mechanism[3]. 
Turnaround time is the time required for a particular process to complete, from 
submission time to completion ( Wall clock time )[2]. The scheduling algorithm is the 
last component of a scheduling system. It has the task to generate a valid schedule for 
the actual stream of submission data in an on-line fashion. A good scheduling 
algorithm is expected to produce very good if not optimal schedules with respect to 
the objective function while not taking ‘too much’ time and ‘too many’ resources to 
determine the schedule. Unfortunately, most scheduling problems are computationally 
very hard.  
 
 MLFQ Scheduling 
Unix and Windows NT use a strict multilevel feedback queue scheduling algorithm. 
Modern operating systems support up to 160 queues in which a process is placed, 
depending on its priority[4]. The MLFQ scheduler is priority-preemptive, where a 
running process can be preempted from the CPU by another process that has a higher 
priority. The multi-level feedback queue is an excellent example of a system that 
learns from the past to predict the future. Such approaches work when jobs have 
phases of behavior and are thus predictable, of course one must be careful with such 
techniques, as they can easily be wrong and drive a system to make worse decisions 
than they would have with no knowledge at all.  
 
Neural Network in Scheduling  
NN is composed of several layers of processing elements or nodes. These nodes are 
linked by connections, with each connection having an associated weight. The weight 
of a connection is a measure of its strength and its sign is indicative of the excitation 
or inhibition potential. A NN captures task-relevant knowledge as part of its training 
regimen. This knowledge is encoded in the network in: the architecture or topology of 
the network, the transfer functions used for nonlinear mapping and a set of network 
parameters (weights and biases) [6]. Learning from past history is a fundamentally ill 
posed. A model may fit past data well but not perform well when presented with new 
inputs. Recurrent NNs (RNNs), leverage the modeling abilities of NNs for time series 
forecasting. Feedforward NNs have done well in classification tasks such as 
handwriting recognition, however in dynamical environments, techniques needed that 
account for history. In RNN, signals passing through recurrent connections constitute 
an effective memory for the network, which can then use information in memory to 
better predict future time series values [5].  
 
 
LITERATURE SURVEY 
Semantic cognitive scheduling method is presented by Shlomi, Avi and Igal Shilman 



Analysis of Improved Neural MLFQ Scheduler 1613 
 

 

[1]. Here authors introduced a framework, define the general problem, provide a 
lower bound for the optimal algorithm in terms of time complexity and present 
dynamic and greedy competitive algorithms for the case of bounded state. The 
process dependency graph is used to achieve effective scheduling[1].  
 Rami J. Matarneh [6] founded that an optimal time quantum could be calculated 
by the median of burst times for the set of processes in the ready queue, unless if this 
median is less than 25ms. In such case, the quantum value must be modified to 25ms 
to avoid the overhead of context switch time.  
 Allocating CPU to a process requires careful attention to assure fairness and avoid 
process starvation for CPU. Different CPU scheduling algorithm have different 
properties and may favor one class of process over another so Al-Husainy [7] 
suggested numerous performance measures for comparing CPU scheduling 
algorithms. Becchetti, L., Leonardi, S., Marchetti S. A. [8] suggested Recurrent 
Neural Network to optimize the number of queues and quantum of each queue of 
MLFQ scheduler to decrease response time of processes and increase the performance 
of scheduling. They proposed that neural network takes inputs of the quantum of 
queues and average response time. After getting the required inputs, it takes the 
responsibility of finding relation between the specified quantum changes with an 
average response time. It can find the quantum of a specific queue with the help of 
optimized quantum of lower queues. Thus, this network fixed changes and specify 
new quantum, which overall optimize the scheduling time[8].  
 Julien Perez1, Balazs Keg, Cecile Renaud [9] models the job scheduling problem 
in grid infrastructure as a continuous action-state space, multi-objective reinforcement 
learning problem, under realistic assumptions. So, formalizing the problem as a 
partially observable Markov decision process, here used the algorithm of fitted Q-
function learning using an Echo State Network.  
 Round Robin, considered as the most widely adopted CPU scheduling algorithm, 
undergoes severe problems directly related to quantum size. Abbas Noon, Ali 
Kalakech, Seifedine Kadry [8] proposed a new algorithm, AN based approach called 
dynamic-time-quantum; the idea of this approach is to make the operating systems 
adjusts the time quantum according to the burst time of the set of waiting processes in 
the ready queue.  
 Puneet Kumar, Nadeem and M Faridul Haque [10] proposed a new improved 
scheduling algorithm technique based on Fuzzy Logic. Their proposed algorithm has 
been implemented and compared with the existing FCFS and Round Robin. Here 
Fuzzy Logic has been used to decide a value for time quantum that is neither too large 
nor too small such that every process has reasonable response time and the throughput 
of the system is not decreased due to unnecessary context switches. Basney, Jim and 
Miron [11] tried to apply smoothed competitive analysis to multilevel feedback 
algorithm. Smoothed analysis is basically mixture of average case and worst case 
analysis to explain the success of algorithms. Atul Negi, Senior Member, IEEE, 
Kishore Kumar P[12] shows that machine learning algorithms are very efficient in the 
characterization of process. The C4. 5 decision tree algorithm achieved good 
prediction (91% to 94%), which indicates that when suitable attributes are used, a 
certain amount of predictability does exist for known programs. In this paper 



1614  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

experiments show that 1:4% to 5:8% reduction in turnaround time is possible and this 
reduction rate slowly increases with the input size of the program. From the 
experiments, author finds the best features : input size, program size, bss, text, rodata 
and input type of a program that can characterize its execution behavior. This 
technique can improve the scheduling performance in a single system[12].  
 After studying various aspects of scheduling techniques and methods used in 
improvement of those algorithms, we can not neglect the fact that MLFQ is most 
widely used algorithm in recent OS and research to improve it, is still going on. We 
will move forward to focus on our proposal, MLFQ and use of NN to improve 
performance of MLFQ scheduling algorithm in the next section.  
  
 
THE PROPOSED WORK [13] 
Neural Approach 
Here ready processes arrives for execution and demands CPU time. Processes sorted 
according to predicted burst time in ascending order and divided among multiple 
queues. Burst span time is calculated for each queue and dynamic time quantum is 
calculated for each queue. RNN is used to optimize turnaround time and then it 
compares old and new turnaround time, lesser one is selected.  
 We need to control a running process' quantum automatically and dynamically. A 
process' desired quantum can be determined by analyzing its behavior, this is most 
easily measured by the OS. This behavior classifies a process as “interactive”, 
“multimedia”, “cpu-bound” or any other classes like “size of initialized data”, ”size of 
readonly data”etc. one wishes to distinguish from. The user defines the classes and the 
priorities to be assigned to processes that fall into these classes. If the Neural Network 
classifies a process based only on its most recent activity profile, processes will most 
likely be assigned different quantum on each classification cycle because of these 
fluctuations. To lessen this fluctuation, the NN has to be enhanced with some form of 
memory. So we use Recurrent Neural Network here.. Networks' memory is used to 
store the feature values on the inputs at previous time steps. Processes are unrelated so 
at one point in time we have the features of one process clamped onto the input, but 
the memory will contain a value related to the inputs of the previous, unrelated 
processes. This will hamper learning rather than facilitate it. The input at network 
cycle t is completely unrelated to the input at cycle t − 1. If there are k processes, the 
input at cycle t is related to that at cycle t−k, but only if no processes were created or 
destroyed in that time span. This becomes too complicated too quickly. Requirement 
is a memory of input history per process. The global history which represents the 
relationship between processes is important in scheduling. The RNN scheduler can 
focus on the main issues of calculating a quantum for each process based on their 
isolated behavior.  
 
Dynamic Time Quantum allocation 
As shown in fig 1, RNN updates the weights and then changes the quantum of the 
queues input and specifies a new quantum for queues. We can find the effects of this 
change on average turnaround time, the new amounts of quantum to be given to the 



Analysis of Improved Neural MLFQ Scheduler 1615 
 

 

RNN function. The quantum of queues are fed back to the inputs in a recursive way, 
means only the new quantum of a specified queue is fed to the input and the other 
queues receive the former amounts as inputs. After replacing the new quantum of a 
specified queue in this function, using pre-assumed default processes used to obtain 
the primary turnaround time, the new turnaround time caused by this change is found. 
This approach is aimed to present an intelligent algorithm to optimize the average 
turnaround time. It can be been optimized by learning the NN. Learning time of the 
network is directly related to the amounts of input data. RNN used to recognize the 
trend information of time series data. Reason to use it is, it produces a trace of its 
behavior and keeps a history of its previous states. Quantum of queues and the 
average turnaround time are the inputs of the RNN. Average turnaround time, is fed to 
the RNN as an input fed back from output, so the network finds the relation of the 
quantum change of a specified queue with the average turnaround time and the 
quantum of other queues. We try to optimize the average turnaround time by 
assuming change in quantum of specified queue. By characterizing or recognizing 
programs it may be possible to understand their previous execution history and predict 
their resource requirements as resource we consider here is Time Quantum[13].  

 

 
 

Figure 1 Architecture for DTQ allocation[13] 
 
 
Parameter Selection  
Text section is a place where the compiler put executable code of a program. 
Turnaround time reduction rate slowly increases with the input size of the program. 



1616  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

We consider here, processes of type computation bound and I/O bound. So here we 
need to study the execution behavior of several programs with its characteristics that 
can be used to predict the dynamic time quantum. We can take representative 
programs like searching in array, matrix operations, sorting arrays, recursive, random 
number generator programs etc. And we use Pro-log file here which consists of fully 
labeled data about these processes for training [13].  
 By characterizing or recognizing programs it may be possible to understand their 
previous execution history and predict their resource requirements. So input neurons 
are characteristics of a program like bt,. rodata,. text,. data from which RNN extracts 
information into memory. Hidden layer neurons and is used to optimize turnaround 
time as shown in fig 2 [Design-of-RNN ], input neurons as process characteristics, 
hidden neurons will use extracted features, Levenberg-Marquardt backpropagation 
function can be used to train the network. After running the network and updating 
activations, the new activations of the memory nodes are extracted from the network. 
This is repeated for the next process. For a particular process, the memory will be a 
function of the features at the previous time steps of only that process. Weight 
updating is based on the network error value of every process. Memory strength can 
be modified by changing the weight values of the recurrent connections. In RNNs 
signals passing through recurrent connections constitute an effective memory for the 
network, which can then use information in memory to better predict future value[13].  

 

 
 

Fig 2 Design of RNN for proposed approach [13] 
 



Analysis of Improved Neural MLFQ Scheduler 1617 
 

 

Proposed Algorithm [13] 
n = total no. of processes  
Pri = No. of priorities  
Prh= highest priority in queue  
AVpr=Average of priorities  
Bsp= BurstSpan Input : No of processes (P1, P2, ……., Pn) 
Burst time of processes (Bs1, Bs2, …. Bsn) 
Priority of processes (Pri1, Pri2……Prim).  
TQ= Time Quantum 
Bi=initial burst value of queue, Bm=mid burst value of queue 
Bl=last burst value of queue  
Output : TaTAv = Average turnaround time 
1. Process arrives in ready queue with arrival time and predicted burst time.  
2. Sort the processes into queues according to ascending order of burst time 
3. Assign the priority to process in ascending order.  
4. Update the Pro-Log file about i/p type, i/p size, text, program size and uninitialized 
data info size.  
5. For each queue x=1 to n repeat the following :  
5. 1 Calculate time quantum for each queue Qx as follows. TQ (Qx)= (Bsp * n) / 
(AVpr * Prh)  
Where Bsp= ( (Bi-initial+Bm-mid+Bl-last)/3) Calculate Average Turnaround time 
TaTAv  
5. 2 Using RNN find the optimum value of queue according to other queue quantum 
and the average turnaround time that is found in the previous stages.  
 
 
IMPLEMENTATION AND EXPERIMENTAL SETUP 
The experimental procedure is divided into four phases. In the first phase, we create 
the data set from the program's run traces and make the data base with the static and 
dynamic characteristics of the programs. In the second phase, we design and simulate 
MLFQ scheduler to study behavior of MLFQ scheduling in terms of average 
turnaround time by using dynamic time quantum, in the third phase we use Recurrent 
NN to find more appropriate time quantum to get optimum average turnaround time 
by providing it more information about the process to decide upon time quantum and 
in the fourth phase we execute scheduler by neural approach as time quantum will be 
given to the scheduler suggested by RNN.  
 
Create dataset 
Processes considered here are programs in c. As discussed earlier we consider here 
process attributes (burst time),. data ( the size of the initialized data that contribute to 
the size of the program's memory image size),. rodata (read-only data size that 
typically contribute to a non-writable segment in the process image,. text (the 
executable instructions size (bytes )of a program). We used readelf and time 
commands to get the attributes. We build the data set of 300 execution instances of 
programs like array processing. We collected the data like the above for 15 programs 



1618  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

with different input sizes, different data initialization and different number of constant 
declarations in the program. Data of 300 instances of the above programs was 
collected and made into database. bt is considered in milliseconds and. text,. data and. 
rodata converted from hex to decimal in bytes, Following table 1 shows the Input and 
Output of RNN. Input sample data collected by readelf and time command, output is 
average turnaround time (TaTAv) predicted by RNN.  
 

Table 1 Input and Output of RNN MLFQ Scheduler 
 

 I/P O/P 
Sr. No.  Process Bt . data . rodata . text TaTAv 

1 p1 1718 54 110 626 4668 
2 p2 1818 54 80 578 
3 p3 858 46 135 770 
4 p4 5598 58 122 658 
5 p5 48 54 251 658 
6 p6 2038 58 177 1506 
7 p7 1628 62 357 818 
8 p8 2068 190 113 514 
9 p9 3068 58 46 978 

10 p10 835 55 289 1112 2483 
11 p11 895 51 222 889 
12 p12 385 99 209 895 
13 p13 55 67 390 927 
14 p14 835 71 198 895 
15 p15 355 59 174 927 
16 p16 1715 71 172 1233 
17 p17 3335 43 243 1167 
18 p18 1815 51 208 984 

 
 In Recurrent Neural Network implementation phase we provide the additional 
information about the processes as data, rodata and text along with the information of 
burst time, to predict the average turnaround time for a set of 9 processes. Setting up 
Recurrent NN in matlab, Input layer as 36 inputs (9 processes with 4 parameters each) 
Hidden Layer as 1 (27 neurons) and Output Layer as 1 (average turnaround time). 
Activation is fed forward from input to output through “hidden layers” 
 Training the network with 300 instances of process inputs, best performance is 
achieved after 8 epochs.  
 Weight bias data, 1. 4617-1. 3568-1. 2349-1. 1013 1. 0067-0. 9049-0. 7816-0. 
6581 0. 5702-0. 4631 0. 3460…..  
 Randomly divide training data in two sets, training and validation. For each 
number of hidden neurons we want to try, we train our network with the training set 
and evaluate the error in the validation one. The lowest validation error gives us a 
good estimation of the best training parameter.  



Analysis of Improved Neural MLFQ Scheduler 1619 
 

 

 Levenberg-Marquardt backpropagation technique is used for training the network. 
After every such epoch, compute the error. Stop the training when the error falls 
below a predetermined threshold, or when the change in error falls below another 
predetermined threshold, or when the number of epochs exceeds a predetermined 
maximal number of epochs. Many (order of thousands in nontrivial tasks) such 
epochs may be required until a sufficiently small error is achieved.  
 
Result and Analysis  
Test data of 160 instances of 20 processes generated and the model is tested to 
analyze the result. We analyzed the cases where we could be able to achieve our 
target as to minimize the average turnaround time. The processes for which we get the 
best results are analyzed with all its attributes and its behavior, RNN respond in 
different way for different pattern or behavior of processes. Pattern of processes and 
its attribute values provided to the scheduler affects to the average turnaround time. 
Following is the comparative study of best case, worst case and average case as per 
result given by MLFQ scheduler using RNN approach.  
 In best case scheduler was able to achieve minimum TaTAv (Average Turnaround 
time) as suggested by RNN as shown in fig 3. And in worst case scheduler was not 
able to achieve minimum TaTAv (Average Turnaround time) as suggested by NN. 
Results were much better without the prediction of NN, fig 4 shows the worst cases 
where actual average turnaround time is more than the predicted average turnaround 
time.  

Table 2 Best Case of RNN prediction in MLFQ scheduling 
 

TaTAv before prediction TaTAv after prediction 
7440 7337 
2522 2414 
4147 3925 
5447 5164 
7483 7170 
6718 6364 
7170 6702 
7391 6905 
7440 6905 
8013 7378 
8013 7337 
6109 5372 
4668 3925 
3225 2414 
3319 2340 
8013 6905 
7483 6364 
6702 516 



1620  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

 
 

Fig 3 Best Case of RNN prediction in MLFQ scheduling 
 

 
 

Fig 4 Worst Case RNN prediction in MLFQ scheduling 
 
Behavior of process input attributes and its effect on RNN prediction 
One aspect of most sets of data is that the values are not all alike; indeed, the extent to 
which they are unalike, or vary among themselves is of basic importance. Measuring 
the behavior of input parameters to find out how these process attributes affect in 
worst case and best cases. Let us observe that the dispersion of a set of data. If we 



Analysis of Improved Neural MLFQ Scheduler 1621 
 

 

observe the data we could say that more the variations in data more accurate are the 
results of the scheduler. Standard deviation is a measure of the spread or dispersion of 
a set of data. It is calculated by taking the square root of the variance. In other words, 
the more widely the values are spread out, the larger the standard deviation. Sample 
variance is a measure of the spread of or dispersion within a set of sample data. The 
sample variance is the sum of the squared deviations from their average divided by 
one less than the number of observations in the data set. Measuring variability is of 
special importance in inference. The range of a set of data is the difference between 
the largest value and the smallest. Although frequency distributions can take on 
almost any shape or form, most of the distributions we meet in practice can be 
described fairly well.  
 If we refer to the table 3 and 4 for deviation in burst time and the range of values 
in best and worst cases then we could easily figure out that the varied process burst 
time gives more accurate prediction in best case. But when it is less spread among its 
values as inputs then it is little difficult for RNN to predict the accurate output. In the 
same way if we refer to table 5 and 6 and table 7 and 8 results RNN works well in 
predicting if different size data bundled together and if there are more differences in 
initialized data segment (. data), and size of readonly data (. rodata) of processes so 
our RNN prediction goes well with it. As opposed to this if we observe the data of 
worst cases of each input then combination of more similar data as similar kind of 
processes scheduled together then RNN gives the inaccurate result as RNN has failed 
to relate it and predict it about the output. In all cases if there is more deviation and 
variance and if data at a time covers maximum range then it gives the best results.  
 

Table 3 Pattern of input ‘bt (burst time)’ in Best case for seven time steps 
 

Standard Deviation Sample Variance Range 
1556. 399 2422378 5550 
3387. 001 11471775 9280 
4030. 324 16243511 9570 
1294. 161 1674853 3020 
1294. 161 1674853 3020 
2988. 746 8932603 9240 
2988. 746 8932603 9240 

 
Table 4 Pattern of input ‘bt (burst time)’ in Worst case for six time steps 

 
Standard Deviation Sample Variance Range 

778. 0335 605336. 1 2020 
1096. 563 1202450 2970 
858. 1299 736387 2996 
1105. 918 1223054 3280 
858. 3079 736692. 5 2963 
1079. 872 1166123 2923 



1622  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

Table 5 Pattern of input ‘. data ‘ in Best case for seven time steps 
 

Standard Deviation Sample Variance Range 
45. 053055 2029. 778 144 
16. 384274 268. 4444 52 
7. 7746025 60. 44444 24 
19. 843835 393. 7778 64 
19. 843835 393. 7778 64 
44. 993827 2024. 444 144 
44. 993827 2024. 444 144 

 
Table 6 Pattern of input ‘. data’ in Worst case for six time steps 

 
Standard Deviation Sample Variance Range 

16. 61325 276 56 
15. 6205 244 48 
8. 717798 76 28 
12. 66886 160. 5 41 
11. 14426 124. 194 35 
13. 78405 190 42 

 
Table 7 Pattern of ‘. rodata’ in Best case for seven time steps 

 
Standard Deviation Sample Variance Range 

95. 711952 9160. 778 311 
100. 72294 10145. 11 288 
106. 53925 11350. 61 311 
44. 989196 2024. 028 118 
34. 989196 2020. 028 115 
81. 348701 6617. 611 253 
80. 348501 6517. 611 243 

 
Table 8 Pattern of ‘. rodata’ in Worst case for six time steps 

 
Standard Deviation Sample Variance Range 

35. 769323 1279. 444 117 
54. 80293 3003. 361 152 

14. 503831 210. 3611 44 
75. 707405 5731. 611 211 
56. 682841 3212. 944 194 
55. 493243 3079. 5 175 

 
 
 



Analysis of Improved Neural MLFQ Scheduler 1623 
 

 

CONCLUSION 
The purpose of this study is to analyze a Recurrent NN model for MLFQ scheduler 
and evaluate the performance of this scheduler in terms of average turnaround time. 
This study was undertaken to apply Recurrent NNs to the recognition of scheduled 
process patterns. Each process runs for a certain time, then scheduler chooses which 
process to execute and for what amount of time. The scheduler must balance fairness 
and efficiency to offer the appropriate behavior. It was found that attributes of process 
we used over here such as burst time of process, size of executable instructions in 
process, size of the readonly data in the process and size of initialized data in the 
process affect on average turnaround time. By learning the behavior of processes in 
this way we can minimize turnaround time. According to our experimental data we 
find that scheduling of different kind of processes together affects the average 
turnaround time. RNN we used here helps us to learn the pattern of processes grouped 
together and predict about the effective average turnaround time. It also suggests TQ 
(Time Quantum) to be given for the set of processes as we are providing enough 
information about processes. The RNN models are not only important for the 
forecasting of time series but also generally for the control of the dynamical system. 
Furthermore, a new method for examining scheduler was established by searching for 
temporal context of processes. It became clear that the method was effective in 
minimizing average turnaround time in MLFQ scheduler.  
 
 
FUTURE SCOPE 
Our future work will include extending our technique to evaluate performance of 
scheduler for other kind of processes. So for that we need to study various parameters 
of the that process affecting turnaround time or response time whichever is required to 
minimize according to application. This could be useful to create more optimized 
rule-based schedulers after experimentation with the Recurrent Neural Network 
scheduler..  
 
 
REFERENCES 
 
[1] Fletcher G. P and Hinde, "Interpretation of Neural Networks as Boolean 

Transfer Functions", Elsevier B. V. Vol. 7, No. 3, pp 207-214. (1994), pp 207-
214 

[2]  Shlomi Dolev and Avi Mendelson and Igal Shilman, "Semantical Cognitive 
scheduling", Fronts (2012).  

[3]  Abbas Noon and Ali Kalakech and Seifedine Kadry, "A New Round Robin 
Based Scheduling Algorithm for Operating Systems: Dynamic Quantum 
Using the Mean Average", IJCSI 3, 1 ISSN : 1694-0814 (2011).  

[4]  F. J. Corbato, M. M. Daggett, R. C. Daley, "An Experimental Time-Sharing 
System", SJCC Paper of IFIPS. (1962).  

[5]  A. Silberschatz and P. B. Galvin and G. Gagne, "Operating System Concepts", 
Wiley Inc. (2009).  



1624  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe 
 

 

[6]  Tal B., "Neural Network Based System of Leading Indicators", CIBC World 
markets (2003).  

[7]  Ehsan Saboori and Shahriar Mohammadi and Shafigh Parsazad, "A new 
scheduling algorithm for server farms load balancing" (2010).  

[8]  J. R. Quinlan, "Comparing connectionist and symbolic learning methods. In 
Computational Learning Theory and Natural Learning Systems", MIT Press 
(1994), 445 456.  

[9]  Stuart J. Russel and Peter Norvig, "Artificial Intelligence: A Modern 
Approach", Prentice-HallInc (1995).  

[10]  Jeffrey L. Elman, "Finding structure in time. Cognitive Science" (1990), 179–
11.  

[11]  Russell S. and Norvig, "Artificial Intelligence: A Modern Approach", London: 
Prentice Hall (2003).  

[12]  Atul Negi Senior Member IEEE and Kishore Kumar P., "Applying Machine 
Learning Techniques to improve Linux Process Scheduling", University of 
Hyderabad (2003).  

[13]  Deepali Maste, Dr. Leena Ragha, Prof Nilesh Marathe, “ Intelligent Dynamic 
Time Quantum Allocation in MLFQ Scheduling ”, International Journal of 
Information and Computation Technology, Volume 3, number 4, ISSN 0974-
2239, 2013 


