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Abstract 
 

Finding the geographical location of the sensors is the most common problem 
associated with the Wireless sensor networks. The Sequential Monte Carlo 
Localization (SMCL) algorithm is the base for most of the localization 
algorithms proposed. These localization algorithms requires high seed node 
density and they also suffers from low sampling efficiency. There are some 
papers which solves this problems but they are not energy efficient. Another 
approach The Monte Carlo Localization Boxed (MCB) method was used to 
reduce the scope of searching the candidate samples and thus reduces the time 
for finding the set of valid samples. In this paper we have proposed an energy 
efficient approach which will consider the direction of movement and the 
speed of acceleration of the sensor nodes. This additional information will 
help in further reducing the scope of searching the candidate samples. The 
valid samples will have more accurate location information and they are less 
likely to be filtered in the filtering step of SMCL. Thus it reduces the number 
of iterations the algorithm needs and hence achieves high localization 
accuracy in less time as compared to traditional SMCL and MCB. 
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Introduction 
Wireless Sensor Networks (WSNs) are composed of large number of sensors that are 
equipped with a processor, wireless communication capabilities, sensor capabilities, 
memory and a power source (Battery). WSNs have been used in many fields including 
environmental monitoring and habitat monitoring, precision agriculture, animal 
tracking and disaster rescue. In many applications, it is essential for nodes to know 
their position. In the most existing sensor networks, sensors are static but some modern 
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applications have sensors that are mobile. For example in habitat monitoring 
applications like Zebra Net [5] sensors are attached to zebras and collect information 
about their behavior and migration patterns [6]. In other applications sensors are 
deployed on cellular phones to measure reception quality [6]. 
 The fundamental problem in designing sensor network is localization- determining 
the location of sensors. Traditional method for obtaining the node’s location 
information include attaching a GPS receiver in each node or manually configure each 
node’s position. As the scale of sensor networks becomes larger and larger, these 
methods are becoming unfeasible for their high cost and inconvenience. Many 
localization algorithms for sensor networks have been proposed [8], [7], [12], [15], 
[16], [13], [14], [17], [10], [11], [18], [9]. These algorithms use some special nodes, 
called anchor or seed nodes, which know their positions to facilitate the determination 
of the positions of the other nodes (called common nodes). However these algorithms 
are designed for static sensor networks and are not applicable to mobile sensor 
networks. Most of these algorithms also require special costly hardware as they depend 
upon measuring ranging information from signal strength, time of arrival, time 
difference of arrival or angle of arrival. Adding the required hardware increases the 
cost and size of the nodes. 
 We are interested in performing localization in a more general network 
environment where the prior deployment of the seed node is unknown, node 
distribution is irregular, the seed density is low and where seeds and nodes can move 
uncontrollably. Although mobility makes other localization techniques increasingly 
less accurate, our technique takes advantage of mobility to improve accuracy and 
reduce the number of seeds required. 
 We consider a sensor network composed of seeds that know their locations and 
nodes with unknown locations. We are interested in following three scenarios: 
 
Nodes are static, seeds are moving:  
For example, a military application where nodes are dropped from plane onto land and 
transmitters attached to soldiers in the area are used as moving seeds. Each node 
receives information from seeds and estimates its location more accurately. 
 
Nodes are moving, seeds are static:  
For example, nodes are moving along the river and seeds are placed at fixed locations 
on the river banks. In this scenario the nodes location will change as the time passes, 
old location will become inaccurate since the node has moved. So the seed information 
is required to revise the location estimate. 
 
Both nodes and seeds are moving:  
This scenario is most general in nature. It is applicable to any application where the 
nodes and seeds are deployed in an ad hoc way.  
 
 Some localization algorithms specially designed for mobile sensor networks have 
also been proposed [1], [19], [2], [20], [4]. They all use the Sequential Monte Carlo 
(SMC) method. In mobile sensor networks the SMC methods are preferred as they are 
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easy to implement and can exploit nodes mobility to improve localization accuracy. 
But the SMC methods need to keep sampling and filtering until obtaining enough 
valid samples. This is very time consuming and not suitable where nodes have limited 
computation capability. In this paper we will use Bounding Box method which will 
reduce the scope of searching candidate sample. We will further improve the location 
accuracy by adding the information about the direction of movement of the node with 
the help of a compass attached with each node. Now using this information we can 
predict the next position of the valid samples more accurately. Hence we can calculate 
the location of the nodes more accurately. 
 
 
Background 
Network Model: 
We have 2 kinds of nodes, one is seed node who knows their exact position at any time 
and second is common nodes who needs to determine their position in each time unit. 
Both the seed node and common node only have limited knowledge of their mobility. 
We assume that a node is unaware of its moving speed and direction, other than 
knowing its maximum speed is vmax. Which means in each time unit a node can move 
in any direction with speed v where 0 < v ≤ vmax, but the exact value of v is unknown. 
 Initially nodes are deployed randomly over the network area. Two nodes can 
communicate with each other only if they are within the communication range defined 
by the radius r. The 1-hop neighbors of sensor p are those sensors that can 
communicate with it directly i.e. the sensors which are present within radius r. The 2-
hop neighbors of sensor p are those who can communicate with the 1-hop neighbors of 
p directly but not with p. Let suppose a node q is there which can directly 
communicate with node p, If q is a seed node then we can say that q is p’s 1-hop seed 
node and if q is a common node then we can say that q is p’s 1-hop common node. 
Similarly if there is another node r which cannot communicate with p but can 
communicate with q directly, then we say r is 2-hop neighbor of p.  
 
Sequential Monte Carlo Localization (SMCL) 
The Sequential Monte Carlo (SMC) method [21] provides simulation based solutions 
to estimate the posterior distribution of non-linear discrete time dynamic models. The 
posterior distribution is represented using a set of weighted samples, and the samples 
are updated gradually as the time goes. In each time unit samples are updated using the 
previous samples and this updated samples are then validated using the observed seed 
nodes in current time unit. 
 The Sequential Monte Carlo Localization (SMCL) algorithm [1], is the first 
algorithm using SMC methods for localization in mobile sensor networks. We can 
consider SMCL as a 3 step operation for each common node: 
 
Initialization:  
Node has no knowledge about its location in the deployment area. N initial samples are 
selected randomly to represent p’s possible positions.  
 L0 = {l01, l02, …….., l0N} 
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 Here N is a constant which represents the number of minimum samples to 
maintain.  
 
Prediction:  
A node starts from the set of possible locations computed in previous step, Lt-1 and 
computes a set of n new samples, Lt using the transition equation. The Transition 
equation p (Lt

i|Lt-1
i) is determined by the mobility model or other constraints. 

In SMCL[1] the Transition equation is given by: 
 P (lt | lt-1) = 1/πv2

max
 if d (lt, lt-1) < vmax 

 0 if d (lt, lt-1) ≥ vmax   (1) 
 
 Where d (lt, lt-1) is the distance between two samples lt and lt-1. So the set of n new 
samples computed in prediction step contains one location selected randomly from the 
circle of radius vmax around every point in lt-1. 
 
Filtering:  
Weights of the new samples found in previous step are computed as p (lt

i|ot), where ot 
is the newly observed seed node in the current time unit. Samples with 0 weight are 
dropped and if the number of samples after filtering is less that N, then go to step 2. 
 Let S denotes the set of all 1-hop seed neighbors of N and T denotes set of all 2-
hop seed neighbors of N, then the filtering condition of lt is: 
 filter (lt) = s�S, d (l, s)�r�s�T, r�d (l, s)�2r 
 
 Thus we eliminate the inconsistent locations from possible locations. After filtering 
if the possible locations are less than N then prediction and filtering process repeats till 
we obtain N valid samples. After obtaining N valid samples, p calculates its position as 
the weighted average of all the samples.  
 
Monte Carlo Localization Boxed (MCB) 
The Monte Carlo Localization Boxed (MCB)[2] is another version of Sequential 
Monte Carlo Localization (SMCL). The steps in MCB are similar to those in MCL 
with difference in the use of seed information and in method for drawing new samples. 
The MCL algorithm uses 1-hop and 2-hop neighbor information for rejection of 
impossible samples in filtering step only. In MCB the seed information is used to 
constrain the sample area, so this method is easy and fast as compared to MCL as the 
samples are less likely to be filtered in the filtering step. Thus it reduces the number of 
iterations the algorithm needs to fill the sample set entirely. 
 Building the Bounding Box : The bounding box is the region of the deployment 
area where the node is localized. A node that has seed nodes as its 1-hop or 2-hop 
neighbors, builds a bounding box that covers the region where the neighboring seeds 
radio range overlaps.  
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Fig.1. MCB[2] shaded region is the valid sample area. 
 

 
 The bounding box reduces the candidate samples area. It constraints candidate 
samples into much smaller area called as valid sample area (fig.1.). The valid samples 
are drawn in this valid sample area only. Building the bounding box simply consists of 
calculating coordinates (xmin, xmax) and (ymin, ymax) as follows: 
 xmin = maxn

i=1 {xi - r},  
 xmax = minn

i=1 {xi + r},  
 ymin = maxn

i=1 {yi - r},  
 ymax = minn

i=1 {yi + r}   (2) 
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where (xi, yi) is the coordinate of the i’th 1-hop seed neighbor. 2-hop seed neighbor can 
be used to reduce the bounding-box further. When using 2-hop seed nodes we should 
replace r with 2r in the above formula. 
 Once the bounding box is built a node simply has to draw samples within the 
region it covers. MCB tries to make best possible use of all information a node has 
received. During the initialization if the sample set is empty then it allows a node to 
use 2-hop seed neighbor information even if it has no 1-hop seed. This means that a 
node that heard only 2-hop seed neighbor can still draw samples using these and 
produce a location estimate, which is not possible in case of MCL. MCB can also 
obtain enough samples where SMCL is not able to obtain enough samples, thus 
achieves higher location accuracy than SMCL.  
 
 
Our Approach 
In this section we will present our approach which is based on MCB and will reduce 
the computation cost and increases location accuracy. Our approach utilizes the 
information about the direction of movement and the speed of motion of the common 
node. The direction of movement is calculated with the help of navigational instrument 
compass and the speed of motion is calculated with the help of Accelerometer. The 
information about direction of movement and direction of motion of common node 
provided by compass and accelerometer respectively will be used in prediction step of 
MCL to predict N new samples more accurately, hence it will improve localization 
accuracy. 
 
Compass:  
A compass is a navigational instrument that measures directions in a frame of 
reference that is stationary relative to the surface of the earth. The frame of reference 
defines the four cardinal directions (or points) – north, south, east, and west. 
Intermediate directions are also defined. Usually, a diagram called a compass rose, 
which shows the directions (with their names usually abbreviated to initials), is marked 
on the compass. When the compass is in use, the rose is aligned with the real directions 
in the frame of reference, so, for example, the "N" mark on the rose really points to the 
north. Frequently, in addition to the rose or sometimes instead of it, angle markings in 
degrees are shown on the compass. North corresponds to zero degrees, and the angles 
increase clockwise, so east is 90 degrees, south is 180, and west is 270. These numbers 
allow the compass to show azimuths or bearings, which are commonly stated in this 
notation. 
 There are two widely used and radically different types of compass. The magnetic 
compass contains a magnet that interacts with the earth's magnetic field and aligns 
itself to point to the magnetic poles. The gyro compass (sometimes spelled with a 
hyphen, or as one word) contains a rapidly spinning wheel whose rotation interacts 
dynamically with the rotation of the earth so as to make the wheel process, losing 
energy to friction until its axis of rotation is parallel with the earth's. 
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Fig.2.: A HTC Desire S showing a compass app 
 

 
 

Fig.3: A depiction of an accelerometer 
 
 
Accelerometer:  
An Accelerometer is a device that measures proper acceleration. The proper 
acceleration measured by an accelerometer is not necessarily the coordinate 
acceleration (rate of change of velocity). Instead, the accelerometer sees the 
acceleration associated with the phenomenon of weight experienced by any test mass 
at rest in the frame of reference of the accelerometer device. For example, an 
accelerometer at rest on the surface of the earth will measure an acceleration g= 9.81 
m/s2 straight upwards, due to its weight. By contrast, accelerometers in free fall or at 
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rest in outer space will measure zero. Another term for the type of acceleration that 
accelerometers can measure is g-force acceleration. 
 An accelerometer alone is unsuitable to determine changes in altitude over 
distances where the vertical decrease of gravity is significant, such as for aircraft and 
rockets. In our approach the Accelerometer will measure the speed of movement of the 
node in the prediction step to predict N new samples more accurately, hence it will 
improve localization accuracy. 
 
Working:  
Our approach is based on MCB, all the steps for localization calculations is same as 
MCB. The difference come in the prediction phase where a node starts from the set of 
possible locations computed in the previous step, Lt-1, and applies the mobility model 
to each sample to get a set of new samples Lt. The set of new samples obtained in the 
prediction phase are more accurate as compared to MCB as we have information about 
the direction of movement and the speed of motion of the node. In MCB we do not 
have any information about the direction of movement and the speed of motion, so 
MCB takes any random direction for the samples. Hence it gives less accurate 
localization results as compared to our approach.  
 
 
Performance Evaluation 
In this section, we evaluate the performance of the proposed approach. We consider 
following two parameters to evaluate the performance: 
 
Localization accuracy: 
Localization accuracy is the most important parameter for evaluating localization 
algorithms. As we have explained earlier that our approach gives better performance in 
prediction phase as compared to MCB and MCL, so definitely it will give accurate 
localization results as compared to MCB and MCL. Our approach takes advantage of 
information about the direction of movement and the speed of motion of the node to 
improve the localization accuracy. 
 
Cost:  
Our approach require navigational instrument compass and Accelerometer to measure 
acceleration for each node so the set up cost is high but the computational cost is less 
as compared to MCB or MCL. The computational cost consists of two parts: the cost 
in generating candidate samples and the cost in evaluating the candidate samples. The 
cost in generating the candidate sample is less as we know the direction of movement 
and the speed of motion of the node so we can generate the candidate samples easily in 
less computation cost and this candidate samples are more accurate as we have 
information about direction of movement and the speed of motion, so cost is also less 
for evaluating this candidate samples.  
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Conclusion and Future work 
In this paper, we have presented an accurate range-free localization approach for 
mobile sensor network. Our approach is based on Monte Carlo Localization Boxed 
(MCB) and it improves the performance of existing MCB algorithm.  
 We will further prove that our approach improves the performance of existing 
MCB algorithm with the help of simulation. We have used Compass and 
Accelerometer to get high localization accuracy but It has increased our cost. We have 
to find some method to decrease the number of external devices like Compass and 
Accelerometer being used. Many issues remain to be explored in future work including 
the most appropriate compass and accelerometer devices for mobile sensor networks. 
If we can get information about accurate speed and direction then we can easily 
achieve high location accuracy. We have to think of a solution which will produce 
accurate localization and it must be energy and cost efficient as well. 
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