
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 4, Number 2 (2014), pp. 207-214
© International Research Publications House
http://www. irphouse.com /ijict.htm

An Overview of Distributed Databases

Parul Tomar1 and Megha2

1Department of Computer Engineering, YMCA University of

Science & Technology, Faridabad, INDIA.
2Student Department of Computer Science, YMCA University of Science and

Technology, Faridabad, INDIA.

Abstract

A Database is a collection of data describing the activities of one or
more related organizations with a specific well defined structure and
purpose. A Database is controlled by Database Management
System(DBMS) by maintaining and utilizing large collections of data.
A Distributed System is the one in which hardware and software
components at networked computers communicate and coordinate their
activity only by passing messages. In short a Distributed database is a
collection of databases that can be stored at different computer network
sites. This paper presents an overview of Distributed Database System
along with their advantages and disadvantages. This paper also
provides various aspects like replication, fragmentation and various
problems that can be faced in distributed database systems.

Keywords: Database, Deadlock, Distributed Database Management
System, Fragmentation, Replication.

1. Introduction
A Database is systematically organized or structuredrepository of indexed information
that allows easy retrieval, updating, analysis, and output of data. Each database may
involve different database management systems and different architectures that
distribute the execution of transactions [1]. A distributed database is a database in
which storage devices are not all attached to a common processing unit such as the
CPU. It may be stored in multiple computers, located in the same physical location; or
may be dispersed over a network of interconnected computers. A distributed database
system consists of loosely-coupled sites that share no physical components [2]. In
Centralized systems (Fig. 1), Data, Process and Interface components of an
information system are central[3].

Parul Tomar & Megha

208

Fig. 1: Centralized Database System.

In order to work on the system end users uses terminals or terminal emulators. In

Distributed System [3, 4, 5] (Fig. 2), Data, Process, and Interface components of an
information system are distributed to multiple locations in a computer network.
Accordingly, the processing workload is distributed across the network. Distributed
Systems are required for Functional distribution, Inherent distribution in application
domain, Economics, Better performance, and increased Reliability.

Fig. 2: Distributed Database System.

2. Requirement of Distributed Database Systems
One of the major objectives of Distributed database system is providing the appearance
of centralized system to end user. The eight transparencies are believed to incorporate
the desired functions of a distributed database system [6]. Such an image is
accomplished by using the following transparencies: Location Transparency,
Performance Transparency, Copy Transparency, Transaction Transparency,
Transaction Transparency, Fragment Transparency, Schema Change Transparency,
and Local DBMS Transparency. Other objective of distributed database is free object
naming. Free object naming is basically allowing different users to access the same
object with different names, or different objects with the same internal name. This will
provide complete freedom to name the objects while sharing data without naming

Site

Database

Computer N/w

Site 4

Site 3

Site 2

Site1

DB4

DB3 DB1

DB2

An Overview of Distributed Databases 209

conflicts. Another objective of distributed system is Concurrency control. Concurrency
control is the activity of coordinating concurrent accesses to a database in a multi-user
database management system (DBMS).

3. Types of Distributed Database Systems
Distributed Database Systems are broadly classified into two types[7,8]:

• Homogeneous Distributed System - In Homogenous distributed database
system, the data is distributed but all servers run the same Database
Management System(DBMS) software

• Heterogeneous Distributed System–In Heterogeneous distributed databases
different sites run under the control of different DBMSs, These databases are
connected somehow to enable access to data from multiple sites.

4. Advantages of Distributed Databases
Following are the various advantages of distributed databases[9,10]:

• Robust–A problem in one part of the organization will not stop other branches
working.

• Security- Staff access can be restricted to only their portion of databases.
• Network traffic is reduced, thus reducing the bandwidth cost.
• Local database still works even if the company network is temporarily broken.
• High Performance–Queries and updates are largely local so that there is no

network bottleneck.
• In distributed systems it is easier to keep errors local rather than the entire

organization being affected.

5. Disadvantages of Distributed Databases
Following are the various disadvantages of distributed databases [9, 10]:

• Complexity-A distributed database is more complicated to setup and maintain
as compared to central database system.

• Security–There are many remote entry points to the system compared to central
system leading to security threats.

• Data Integrity–In distributed system it is very difficult to make sure that data
and indexes are not corrupted.

• In distributed database systems, data need to be carefully placed to make the
system as efficient as possible.

• Distributed databases are not so efficient if there is heavy interaction between
sites.

Parul Tomar & Megha

210

6. Component of Distributed Database Systems
• Distributed Database System consists of the various components (Fig. 3).

Database manager is one of major component of Distributed Database systems.
Database Manager is software responsible for handling a segment of the
distributed database. User Request Interface is another important component of
distributed database systems. It is usually a client program which acts as an
interface to the Distributed Transaction Manager.

• Distributed Transaction Manager is a program that helps in translating the user
requests and converting into format required by the database manager, which
are typically distributed. A distributed database system is made of both the
distributed transaction manager and the database manager.

Fig. 3: Component Diagram of Distributed Databases.

7. Types of Distributed Database Systems
In order to access the data stored at remote location with less message passing cost,
data should be distributed accordingly. Distribution of data is done through
Fragmentation or Replication.

Fragmentation [11]: Fragmentation consists of breaking a relation into smaller
relations or fragments and storing the fragments, possibly at different sites.
Fragmentation of data in distributed database has four major advantages:

Efficiency: Data are stored close to where they are used and separate from other
data used by other users or applications.

Local optimization: Data can be stored to optimize performance for local access.
Ease of querying: Combining data across horizontal partitions is easy because rows

are simply merged by unions across the partitions.There are two types of fragmentation
namely –

DB3

DTM3

DTM2 DBM3

Query or Transaction
Program

Query or Transaction
Program

DTM1 DBM2Query or Transaction
Program

 DBM1 DB1

DB2

An Overview of Distributed Databases 211

• Horizontal fragmentation: Each fragment consists of a subset of rows of the
original relation(Fig. 4). It divides the “Rows” of R where R = R1 U R2 U …

R(a, b, c) -> R1(a, b, c), R2(a, b, c), … (1)

Fig. 4: Horizontal Partitioning.

• Vertical fragmentation: Each fragment consists of a subset of columns of the

original relation (Fig. 5). It divides the “Columns” of R. R =R1 R2 R3…
[3]

R(a, b, c) -> R1(a, b), R2(a, c), … (a is the primary key)R = R1 U R2 U … [4]

Fig. 5: Vertical Partitioning.

Replication [12, 13]: In Replication several copies of a relation are stored at

different sites. Replication will help in increasing reliability, locality and performance.
Various advantages of replication are as follows:

• Reliability: If one of the sites containing the relation (or database) fails, a copy
can always be found at another site without network traffic delays

• Fast response: Each site that has a full copy can process queries locally, so
queries can be processed rapidly.

• Possible avoidance of complicated distributed transaction integrity routines:
Replicated databases are usually refreshed at scheduled intervals, so most
forms of replication are used when some relaxing of synchronization across
database copies is acceptable.

• Node decoupling: Each transaction may proceed without coordination across
the network. Thus, if nodes are down, busy, or disconnected (e.g., in the case of
mobile personal computers), a transaction is handled when the user desires.

• Reduced network traffic at prime time: Often updating data happens during
prime business hours, when network traffic is highest and the demands for

Parul Tomar & Megha

212

rapid response greatest. Replication, with delayed updating of copies of data,
moves network traffic for sending updates to other nodes to non-prime-time
hours.

There are two types of replication which are as follows:
1. Synchronous Replication: All copies of a modified relation (fragment) must be

updated before commit. Here, the most up to date value of an item is
guaranteed to the end user. There are two different methods of synchronous
replication.
a) Read-Any, Write-All: This method is beneficial in case well when reads are

much more frequent than writes.
Read-Any: when reading an item, access any of the replicas.
Write-All: when writing an item, must update all of the replicas.

a) Voting:
• When writing, update some fraction of the replicas.

When reading, read enough copies to ensure you get at least one copy of the most
recent value.

Use a version number to determine which value is most recent the copies "vote" on
the value of the item

2. Asynchronous Replication: Asynchronous replication allows different copies of
the same object to have different values for short periods of time. Data is
updated after a predefined interval of time.
a) Primary Site: In primary-site replication, one copy of data is assigned as

the master copy. Updation of data is possible only with in the master copy.
The secondary copies of data can only be read. Changes to the master are
periodically propagated to the secondary copies.

b) Peer-to-Peer: In peer-to-peer replication, more than one replica is
updatable. In addition, a conflict resolution strategy must be used to deal
with conflicting changes made at different sites.

8. Problems In Distributed Database Systems
One of the major problems in distributed systems is deadlock. A deadlock is a state
where a set of processes request resources that are held by other processes in the set
and none of the process can be completed [14, 15, 16]. One process can request and
acquire resources in any order without knowing the locks acquired by other processes.
If the sequence of the allocations of resources to the processes is not controlled,
deadlocks can occur. Hence we focus on deadlock detection and removal.

• Deadlock Detection
In order to detect deadlocks, in distributed systems, deadlock detection
algorithm must be used. Each site maintains a local wait for graph. If there is
any cycle in the graph, there is a deadlock in the system.
Even though there is no cycle in the local wait for graph, there can be a
deadlock. This is due to the global acquisition of resources. In order to find the

An Overview of Distributed Databases 213

global deadlocks, global wait for graph is maintained. This is known as
centralized approach for deadlock detection.
The centralized approach to deadlock detection, while straightforward to
implement, has two main drawbacks. First, the global coordinator becomes a
performance bottleneck, as well as a single point of failure. Second, it is prone
to detecting non-existing deadlocks, referred to as phantom deadlocks.

• Deadlock Recovery
A deadlock always involves a cycle of alternating process and resource nodes in
the resource graph. The general approach for deadlock recovery is process
termination. In this method, nodes and edges of the resource graph are eliminated.
In Process Termination, the simplest algorithm is to terminate all processes
involved in the deadlock. This approach is unnecessarily wasteful, since, in most
cases, eliminating a single process is sufficient to break the deadlock. Thus, it is
better to terminate processes one at a time, release their resources, and check at
each step if the deadlock still persists. Before termination of process following
parameters need to be checked:
a) The priority of the process:
b) The cost of restarting the process
c) The current state of the process

9. Conclusion
In the current scenario of the fast changing world, distribution of data became the
necessity. Distribution of data has its own advantages and disadvantages. This paper
presents a complete review on distributed databases. It is clear from the study that
distribution of data involves the problem of deadlock. We need to find out the methods
to data distribution and accessing which leads to minimization of deadlock and thus
resulting in proper utilization of resources.

References

[1] www.businessdictionary.com/definition/database.html
[2] en.wikipedia.org/wiki/Database
[3] ib2012itgs.wikispaces.com/file/.../ITGS%20databasde%20homework.pdf.
[4] www.webopedia.com/TERM/D/distributed_database.html
[5] www.inf.unibz.it/dis/teaching/DDB/ln/ddb01.pdf
[6] www.teach-ict.com/as_a2_ict.../A2.../distributed_database/
[7] www.webopedia.com/TERM/D/distributed_database.htm
[8] wps.pearsoned.co.uk/wps/media/objects/.../Chapter%2012_WEB.pdf
[9] https://www.dlsweb.rmit.edu.au/toolbox/Database/.../dist_sys_def.htm
[10] www.csc.liv.ac.uk/~dirk/Comp332/COMP332-DDB-notes.pdf

Parul Tomar & Megha

214

[11] http://stackoverflow.com/questions/5777234/horizontal-vs-vertical-
fragmentation-in-distributed-database-management-systems.

[12] www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/ch22.ppt
[13] Xiangning Liu, Bharat K. Bhargava, “Data Replication in Distributed

Database Systemsover Large Number of Sites”,Computer Science Technical
Reports. Paper 1229

[14] en.wikipedia.org/wiki/Deadlock
[15] X. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting Resource

Deadlocks in Distributed Systems " in ACM, 1982.
[16] B. M. M. Alom, F. Henskens, and M. Hannaford, "Deadlock Detection Views

of Distributed Database," in International conference on Information
Technology & New Generartion (ITNG- 2009) Las Vegas, USA: IEEE
Computer Society, 2009.

