
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 4, Number 4 (2014), pp. 343-350
© International Research Publications House
http://www. irphouse.com /ijict.htm

Comparative Analysis of Various Fault Tolerance
Approaches in Mobile Agents System

Richa Mahajan1, Gurpreet Singh2, Ramandeep Kaur3 and Rahul Hans4

1, 2, 3Dept of Computer Science and Engineering, G.N.D.U,

1, 2, 3 Amritsar, India.
4Dept of Information and Technology, PTU,

4 Jalandhar, India.

Abstract

Mobile Agent technology is emerging as a new paradigm in the area of
distributed and mobile computing. Its paradigm has attracted many
attentions but it is still not widely used. The reason for this is that it
suffers from the various issues regarding reliable mechanisms like
security and the fault tolerance in mobile agent system. Mobile agents
have uniqueness that they can migrate from one server to another in
order to satisfy requests made by their clients. Since mobile agent
moves from one server to another in an itinerary it is easily prone to
various faults like server crash or agent crash, which makes fault
tolerance one of the main issues of reliability in mobile agent system.
This paper surveys various fault tolerance techniques in mobile agent
system proposed by various authors. These techniques are evaluated on
the basis of defined parameters like type of fault, exactly once
execution, agent centric, system centric, coordination and
communication.

Keywords: Mobile Agent; Fault Tolerance; checkpoint; System
Centric; Agent Centric;

1. Introduction
Mobile agents are software agents having a unique ability to migrate from one host to
another in its itinerary. The main characteristic of mobile agent which differentiates it
from other paradigms is

Richa Mahajan et al

344

• Proxy: Mobile Agents may act on the behalf of someone.
• Reactive: Ability to sense environment and act accordingly.
• Autonomous: It means have an ability to act without direct external interfaces.
• Cooperative and Coordination: Mobile Agents should coordinate and co-

operative with other agents to perform a particular task.
• Migrate: It is the core property of mobile agent that it can migrate or transport

itself.
Mobile Agents can execute on those system which provides resources to it that are

needed to complete its task. To accomplish their task mobile agent moves to remote
host and can compute locally and only results can transfer through network, which
results less congestion in network.

In mobile agent computing environment any component of the network machine,
link, or agent may fail at any time, thus may preventing mobile agents from continuing
their executions. Therefore, fault-tolerance is a vital issue for the deployment of mobile
agent systems. Fault tolerance specifies an ability of a system to respond gracefully to
an unexpected failure. Its aim is to provide reliable execution of agents even in case of
failure. Two desire properties to achieve fault tolerance are Non-Blocking and Exactly
Once.

While travelling within a network or from one network to another to complete its
task there could be a possibility of failure. Various types of failure can occur in mobile
agent system are discussed below [7]

• Node Failure: The Complete failure of a compute node implies the failure of all
agent places and agents located on it.

• Agent Failure: Mobile agents can become faulty due to faulty computation, or
other faults like node or network.

• Communication Failure: Failure of entire communication link or single link.
• Fault of component of the agent system: Failure of agent place or incomplete

agent directory.
• Loss of message: this arises due to network failure or failure of communication

unit of an agent.
The rest of the paper is organized as follow. Section 2 describes various existing

fault tolerance techniques of mobile agent proposed by various authors. Like above
section 3 discuss various fault tolerance techniques and evaluate them on the basis of
defined parameters like type of fault, exactly once, agent centric, system centric and
coordination and communication. Section 4 briefly discusses conclusions and future
work.

2. Various Fault Tolerance Approaches
Most of the fault tolerance techniques in mobile agent system are based on replication
and checkpointing. Replication based approaches are classified under two categories
are Temporal Replication and Spatial Replication.

Comparative Analysis of Various Fault Tolerance Approaches in Mobile Agents 345

2.1 Using the CAMA Framework
In [4] authors discussed the CAMA framework supports application-level fault
tolerance by providing a set of abstractions and a supporting middleware that allow
developers to design elective error detection and recovery mechanisms.CAMA
supports system fault tolerance through exception handling. There are three basic
operations available to the CAMA agents for catching and raising exceptions are: raise,
check and wait. These functionalities are complementary and orthogonal to the
application level mechanism used for programming internal agent behaviour.

The advantage of this approach is that the exception handling allows fast and
effective application recovery by supporting flexible choice of the handling scope and
of the exception propagation policy and the drawback of this approach is that it can
block the execution in case when an exception is raised to the agent which has left the
scope.

2.2 Optimistic Replication Approach for transactional Mobile Agent Fault
Tolerance
In [1] authors proposed an approach called optimistic temporal replication allowing
multiple executions of the mobile agent to avoid blocking situation also considers
transactional execution and semantic failures. It prevents a partial or complete loss of
mobile agent [5][9]. Authors consider a transactional mobile agent system having
components like Place (P) which consists of a lookup directory (LD) and storage unit
(SU), Transaction Manager (TM), Mobile Agent (ma), Watch Agent (wa) and
itinerary. This protocol in based on the behaviour of Mobile Agent (ma), Watch Agent
(wa) and itinerary.

• Mobile Agent: It moves to the TM for register the transaction, spawns a new
Watch Agent (wa0) and returns to the first node to start its execution.

• Watch Agent: It doesn’t participate to the transaction computation. It only
listens to messages sent by the mobile agent.

• Transaction Manager (TM): It monitors the global distributed transaction
execution.

This approach is based on check pointing, chain control and message passing to
detect and recover failed agent. Multiple executions are detected using lookup
directories and are solved at the destination place (TM) by committing only one
execution. The advantage of this approach is that it doesn’t violate the exactly once
execution property by using a commit at destination protocol and the drawback of this
approach is that it does not assume perfect failure detection and tolerate network
partition.

2.3 Region-based Stage Construction Protocol for Fault tolerant Execution of
Mobile Agent
In [6] replication-based fault tolerant protocols are classified into two approaches
spatial replication based approach (SRBA) and Temporal replication based approach
(TRBA). In SRBA the agent is replicated and sent to several sites so that the agent can

Richa Mahajan et al

346

survive site failures. The Temporal approach is based on the check pointing the code
and state of agent on the previous site [1].

SRBA has a drawback that additional communication cost is added when move to
next stage. RBSC protocol is used for fault tolerant execution of mobile agents in a
multi-region mobile agent computing environment. It uses new concepts of quasi-
participant and sub stage in order to put together some places located in different
regions within a stage in the same region. On a sequence of nodes a mobile agent ai
executes its tasks. Each action that ai execute on a place pi is called a step. Each step
consists of a set of places called a stage Si [8]. Pwi at Si is called a worker, the others
are called participants. When a worker fails, one of participants is elected as a new
worker and takes over the action of the previous worker. In a multi-region mobile
agent computing environment, places within a stage can be located in the same or
different regions [8].

The advantage of this protocol is that it reduces the total execution time and
decreases the overhead of stage works and the disadvantage is that an overhead occurs
for stage constructed in the same region.

2.5 FATOMAS (Fault Tolerant Mobile Agent System)
In [3] authors introduce FATOMAS, a java-based fault–tolerant mobile agent system.
There are two fault tolerant approaches i.e. Place dependent and Agent dependent.

FATOMAS is based on Agent dependent approach. This approach has the
important advantage to allow fault – tolerant agent execution without having to modify
the underlying mobile agent platform. Currently, FATOMAS supports Voyager mobile
agent platform.

For enabling fault tolerance each mobile agent (called user agent), created a logger
agent which is responsible for providing checkpointing and logging. A user agent and
its logger agent form an agent pair. Logger agent doesn’t participate actively in
computing and needs only a small fraction of the available CPU capacity. User and
logger agent monitor each other, and if a fault is detected by one of them, it can rebuild
the other one from its local information.

The advantage is that logger agent uses only a small fraction of the available CPU
capacity while providing fault tolerance to user agent and the disadvantage is overhead
introduced by the replication mechanisms and with increasing the number of stages
and the size of the agent.

2.6 Using the Witness Agents in 2-Dimensional Mesh Network
In [5] authors introduces that the server and agent failures are detected and recovered
by the cooperation of agents with each other. In order to detect and recover the failed
agent, another types of agent are used, namely the witness agent, to monitor whether
the actual agent is alive or dead [9]. It prevents a partial or complete loss of mobile
agent [1].

Comparative Analysis of Various Fault Tolerance Approaches in Mobile Agents 347

Three types of agents are:
• Actual agent: Agent which perform programs for its owner.
• Witness agent: Agent which monitors the actual agent and witness agent after

itself.
• Probe: Agent which is sent for the recovery of actual agent or the witness

agent.
A communication between both types of agents is done by sending Direct and

Indirect messages [9]. When actual agent is unable to send a direct message to a
witness agent for this purpose there is a mailbox at each server that keeps those
unattended messages. These types of messages are called the Indirect Messages.

The advantage of this approach is that by the use of 2-D mesh network,
dependencies among witness agent get reduced as compare to linear network and the
drawback is that the existing procedure consumes a lot of resources along the itinerary
of the actual agent as the itinerary becomes longer, more witness agents and probes are
necessary, so system complexity increases.

2.7 Transient Fault Tolerance
In [2] author describes how to detect and recover random transient bit-errors at an
agent before starting its execution at a host after its arrival at a host. mobile agent code
often experience transient faults resulting in a partial or complete loss during execution
at a host machine [2], [1], [5]. Errors are detected by comparing three images of code
(original code and two replicas of it) and then recover them by applying XOR
computation on them.

If one byte among the three bytes is corrupted, then this algorithm can detect and
recover it. In case, damage of all the three images of an agent, HARD_ERROR is
invoked for restarting or reloading the agent code execution from stable memory.

The advantage is it helps in detecting corrections and soft errors. fault tolerance is
applied at low level (at every byte) which increases performance and the disadvantage
of this error technique is it can’t detect errors that can occur after the execution of an
agent has started.

3. Comparative Analysis of Fault Tolerance Approaches
In this analysis and evaluation of the techniques is based on some parameters like type
of fault, coordination and communication, agent centric, system centric, exactly once
execution is shown in table 1. The parameters are discussed below:

• Type of Fault: It depicts which type of failure among agent failure, node
failure, and communication failure.

• Coordination & Communication: It tells about the mode of coordination and
communication i.e. Direct or Indirect.

• Agent Centric: Those approaches achieve fault tolerance by the mean of agent
centric, marked by Yes else No.

Richa Mahajan et al

348

• System Centric: Approaches that achieve fault tolerance with the help of
mobile agents are system centric.

• Exactly Once Execution: It says that every transaction should be done only
once.

Table 1: Comparative Analysis of Various Fault Tolerance

Approaches Based on Following Parameters

Approaches
Parameters

[1] [2] [3] [4] [5] [6]

Type of fault Agent Agent
& Link

Agent Agent &
Server

Agent &
Server

Agent

Coordination &
Communication

DR DR DR DR DR &
INDR

DR

Agent Centric Yes Yes Yes Yes No Yes
System Centric No No No No Yes No

Exactly Once Execution Yes No No No No No

Table 2: Pros and Cons of various fault tolerance Approaches.

Mechanisms Pros Cons
Optimistic
Replication
Mechanism [1]

Exactly once doesn’t violate and
also helps to avoid blocking and
network partitioning.

It deals with only semantic
failures.

Transient Fault
Tolerance [2]

Errors can be detected and
corrected at bit level and provide
countable performance.

Can’t detect errors that may
occur after an agent has
started.

FATOMAS [3] LA (Logger Agent) uses a little
amount of CPU capacity while
execution.

Overhead introduced by the
replication and with
increasing the number of
stages and size of the agent.

CAMA
Framework [4]

It provide framework to
developers with a set of
abstraction and handles fault
tolerance by exception handling.

It just deals with fault
tolerance at application level.

Using the
Witness Agents
[5]

Fault tolerance is achieved by
cooperation of agents with each
other.

Consumes a lot of resources
along the itinerary.

Region-Based
Stage
Construction [6]

Reduce the overhead of executing
regions located at different
locations as a result execution
time decreases.

At each time worker fails,
quasi-participant replaces it’s
position with real- participant

Comparative Analysis of Various Fault Tolerance Approaches in Mobile Agents 349

4. Conclusion and Future Work
In this paper we have discussed various fault tolerance approaches proposed by various
authors. All these approaches have their own pros, cons. Most of them suffer from a
common problem that they violate exactly once execution.

From the future point of view work should be done to provide fault tolerance in
dynamic applications and also avoid the violation of exactly once execution. For
providing exactly once execution, at the time when a new agent arrives at the host the
agent compares its composite key with the composite key of already executed agents.
If on comparison both the keys are not same then the new agent will execute on the
host and after successful execution it saves the composite key of recently executed
agent at that host. If on comparison both the keys are same, it simply skips the
computation at that host and jumps to next one. In this way one can achieve exactly
once execution.

References

[1] Z. Linda and B. Nadjib, "Optimistic Replication Approach for Transactional

Mobile Agent Fault Tolerance," In Proc. of 11th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Publication IEEE Conference, 2010.

[2] K.S. Goutam, "Transient Fault Tolerance in Mobile Agent Based Computing,"
In Proc. of INFOCOMP Journal of Computer Science, Vol. 4, page(s) 1-11,
September 2005.

[3] K. Mohammadi and H. Hamidi, “Modeling of Fault-Tolerant Mobile Agents
Execution in Distributed Systems,” In Proc. of Systems Communications,
Publication IEEE Conference, 2005.

[4] A. Budi, I. Alexei and R. Alexander, “On using the CAMA framework for
developing open mobile fault tolerant agent systems,” In Proc. of international
workshop on Software engineering for large-scale multi-agent systems,
Publication IEEE Conference, 2006

[5] A. Rostami, H. Rashidi and M. S. Zahraie, “Fault Tolerance Mobile Agent
System Using Witness Agent in 2-Dimensional Mesh Network,” In Proc. of
International Journal of Computer Science Issues, Vol. 7, Issue 5, September
2010

[6] S. J. Choi, M. S. Baik, H. S. Kim, J. W. Yoon, J. G. Shon and C. S. Hwang,
"Region-based Stage Construction Protocol for Fault tolerant Execution of
Mobile Agent,” In Proc. of the 18th International Conference on Advanced
Information Networking and Application, Publication IEEE Conference, 2004.

[7] Yousuf, F. ; Zaman, Z. , “A Survey of Fault Tolerance Techniques in Mobile
Agents and Mobile Agent Systems,” In Proc. of International Conference on
Environmental and Computer Science, Page(s): 454 – 458, 2009.

Richa Mahajan et al

350

[8] S. Pleisch and A. Schiper, “Modeling fault-tolerant mobile agent execution as
a sequence of agreement problems,” In Proc. of 19th IEEE Symposium of
RDS, Publication IEEE Conference , 2000.

[9] S. Beheshti and A. Movaghar, “Fault tolerance in Mobile Agent Systems by
Cooperating the Witness Agents,” In Proc. of International Conference on
Information and Communication Technologies, Vol. 2, Page(s): 3018 – 2,
Publication IEEE Conference, 2006.

