
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 4, Number 5 (2014), pp. 519-526
© International Research Publications House
http://www. irphouse.com /ijict.htm

Visual Approach to Role Mining with Permission
Usage Cardinality Constraint

V. Thangamani and V.Uma Maheswari

Department of Information Science and Technology, College of Engineering,

Guindy Campus, AnnaUniversity, Chennai.

Abstract

Role Based Access Control (RBAC) is an effective way of managing
permissions assigned to a large number of users in an enterprise. This
paper offers a new role engineering approach to RBAC, referred to as
visual role mining. The key idea is to graphically represent user-
permission assignments to enable quick analysis and elicitation of
meaningful roles with constraint. There are two algorithms: ADVISER
and t-SMAR. The former is a heuristic used to best represent the user-
permission assignments of a given set of roles. The latter is a heuristic
algorithm that, when used in conjunction with ADVISER, allows for a
visual elicitation of roles with permission usage cardinality constraint.

Index Terms: Access controls, data and knowledge visualization,
mining methods, constraint.

1. Introduction
Access control is the process of mediating requests to data and services maintained by
a system, determining which requests should be granted or denied [3]. Significant
research has focused on providing formal representation of access control models.
Among all proposed models, Role Based Access Control (RBAC) [5] has become the
norm in most organizations. This success is greatly due to its simplicity: a role
identifies a set of permissions; users, in turn, are assigned to roles based on their
responsibilities. To implement a RBAC system, it is important to devise a complete set
of roles. This design task, known as role engineering [2], has been recognized as the
costliest part of a RBAC-oriented project. Recently, there has been an increasing
interest in using automated role engineering techniques [7]. All of them seek to
identify de facto roles embedded in existing access permissions. Since these

V. Thangamani & V. Uma Maheswari

520

approaches usually resort to data mining techniques, the term role mining is often used
as a synonym. Despite much work dedicated to the design of role mining algorithms,
existing techniques deal with three main practical issues: meaning of elicited roles,
noise within data, and correlations among roles.

To address the aforementioned issues, visual role mining is devised [1]. RBAC
roles are managed as visual patterns. The rationale behind this approach is that visual
representations of roles can actually amplify cognition, leading to optimal analysis
results [4].Visualization of the user-permission assignments is performed in such a
way to isolate the noise, allowing role engineers to focus on relevant patterns without
resorting to traditional role mining tools. Further, correlations among roles are shown
as overlapping patterns, hence providing an intuitive way to discover and utilize these
relations. The proper representation of user-permission assignments allows role
designers to gain insight, draw conclusions, and design meaningful roles from both IT
and business perspectives.

Constraints are an important aspect of RBAC and sometimes argued to be the
principal motivation of RBAC. Recently, the problem of defining different kind of
constraints on the number and the size of the roles included in the resulting role set has
been addressed. Permission Usage cardinality constraint is one of the cardinality
constraint which restricts the maximum number of permissions that can be included in
a role. Cardinality constraints on the number of permissions included in a role have
been firstly considered in [6], and a heuristic algorithm called Constrained Role Miner
(CRM) has been proposed. The remainder of this paper is organized as follows.
Section II provides detailed description of visual approach with permission usage
constraint. The algorithms ADVISER and t-SMAR are discussed in this section.
Section III shows the experimental results and finally, section IV provides conclusion.

2. Heuristics
This section describes two heuristics such as ADVISER (Access Data VISualizER)
and t-SMAR(t-Simple role Mining Algorithm). The overall system architecture is
represented by Fig. 1.

Fig. 1: System Architecture.

Visual Approach to Role Mining with Permission Usage Cardinality 521

2.1 ADVISER
This algorithm is able to provide a compact representation of a given set of roles. In
particular, it reorders rows and columns of the user-permission matrix to minimize the
fragmentation of each role. Fig. 2 explains ADVISER Algorithm.

Fig. 2: ADVISER Algorithm.

Detailed description follows

1. Rows and columns are sorted independently. ADVISER decomposes the
optimal matrix-permutation problem into two sub problems, that is users (Line
2) and permissions (Line 3) are sorted independently. Due to this symmetry,
from now on we generically refer to rows and columns as items. If some items
are assigned to the same set of roles, they are put together. For this reason, the
algorithm sorts groups of items, called item sets, instead of individual items.
Line 7 identifies items assigned to the same roles.

2. Item set positions are decided one-by-one. In order to facilitate a better
representation of large roles, item sets involving roles with larger areas are
analyzed first. Line 9 implements this behavior. Let I,I` be two item sets.

V. Thangamani & V. Uma Maheswari

522

assusers and assperms denotes the number of users and number of permissions
respectively. I is consider before I` only if

Max |assusers(r)*assperms(r)| > Max|assusers(r`)*assperms(r`)|
r€roles(I)\roles(I`) r`€roles(I`)\roles(I`)
when roles(I)\roles(I`) or roles(I`)\roles(I`)=0 then Max=0.

3. The algorithm tries to avoid large gaps by putting item sets close to each other
when they share large roles. For this Jaccard coefficient metric is
used.Calculate jaccard coefficient for ranking the similarity of items.

∑ |m(r)|
r€roles (a) roles (b)
Jacc ({a}, {b}) = --
∑ |m(r)|
r€roles (a) roles (b)

where m(.) is the membership function assusers(.) when we sort permissions, or the
function assperms(.) when we sort users.

4. Each item set is preferentially positioned at the beginning or at the end of
already sorted item sets. The idea is to avoid to “worsen” already found, high
similarities. Lines 10-26 implement the item set sorting strategy by deciding a
position p for the item set I in an item set permutation. The first two item sets
are just inserted in the first two positions (lines 10-11). Then, subsequent item
sets are inserted among already-sorted item sets only when this operation
actually improves the existing sorting.

5. Item set sorting is converted to item sorting. This is the When all item sets in
ITEMS have been sorted, they are “expanded” (Line 28) to return the ordering
of each single item in ITEMS—instead of providing an ordering for group of
items that share the same roles.

2.2. t-SMAR
This algorithm takes as input the matrix UPA and returns a complete role set satisfying
the cardinality constraint (i.e., at most t permissions are associated to each role).

The basic idea is to select from UPA all rows having less than t permissions in an
order that will be defined below. Such rows will correspond to candidate roles that will
be added to the candidate role-set. If there is no row having at most t permissions, then
a row is selected and, t of the permissions included in the row is chosen. The selected
permissions induce a role that is added to the candidate role-set. Then, all rows covered
by the candidate row-set are removed from UPA and the procedure is iterated until the
UPA matrix contains some rows. The above sketched procedure is more formally
described by t-SMAR algorithm where we use the following notation. Given an a x b
binary matrix M, for 1 ≤ i ≤ a, with M[i], |M[i]| denotes the M`s i-th row and number
of one’s appearing in M[i] respectively.

The procedures numCols (M) and numRows (M), return the number of columns
and rows, respectively, of the matrix M. For a set S and integer h, the procedure
first(S,h) returns the first h elements listed in the set S. Given a user-permission

Visual Approach to Role Mining with Permission Usage Cardinality 523

assignment matrix UPA, a new candidate role is generated by selecting a UPA's row
having the least number of permissions with ties broken at random (Lines 6-8 of t-
SMAR). If the number of permissions associated to the selected row is at most t, then a
new role is created (Line 9 of t-SMAR). The new role, containing all permissions
associated to the selected row, is then added to the candidate role-set (Line 21 of t-
SMAR). In this algorithm, the matrix uncoveredP represents the user’s permissions that
are not covered by the roles in candidateRoles. After discover a role to be added to the
candidateRoles set, running setToZero Algorithm. All rows whose permissions are
covered by the candidate roles are removed from both matrices uncoveredP and UPA
removeCoveredUsers's pseudo-code is quite similar to the pseudo-code for setToZero.
Algorithm halts when all UPA's rows have been removed (Line 5 of t-SMAR). If the
number of permissions exceeds the cardinality constraint, then two possible ways of
selecting the role to be added to the candidate role-set have been considered. These
two possibilities gave rise to two heuristics referred to as t- SMAR-0 and t-SMAR-1,
respectively. Fig. 3 and Fig. 4 explains the t-SMAR and SetToZero Algorithm
respectively,

Fig. 3: t-SMAR Algorithm.

V. Thangamani & V. Uma Maheswari

524

In t-SMAR-0 (i.e., when selection is set to 0 in t-SMAR), the new role will simply
contain the first t permissions associated to the selected row (Lines 10-11 of t-SMAR).
While, in t-SMAR -1 (i.e., when selection is set to 1 in t-SMAR) select a row (Lines 13-
16 of t-SMAR) of the matrix uncoveredP having the least number of permissions, ties
broken at random. In other words, selects a row (i.e, a users) having the least number
of permissions still uncovered. If the selected row is associated to more than t
permissions, then the new role will only include its first t permissions (Lines 17-19 of
t-SMAR). This algorithm returns a set of roles (i.e., rows and subsets of rows) exactly
covering the UPA matrix. The following SetToZero pseudo code updates the matrix
uncoveredP according to newRole.

Fig. 4: SetToZero Algorithm.

The roles produced by t-SMAR are used in conjunction with ADVISER, allows for

a visual elicitation of roles with permission usage cardinality constraint.

3. Experimental Results
In this section results obtained by the evaluation of ADVISER and t-SMAR are
discussed. Fig. 5 shows the results obtained when using ADVISER fed with the
predefined roles. Fig. 6 shows the results obtained when using ADVISER fed with the
roles generated by t-SMAR.

Visual Approach to Role Mining with Permission Usage Cardinality 525

Fig. 5: Visual representation of
predefined roles

Fig. 6: Visual Representation of roles with
constraint

4. Conclusion
Devising a complete set of roles is necessary to implement a RBAC system. This is
accomplished by bottom up approach called Role Mining. The bottom up approach
starts with existing user permission assignments and attempts to derive roles from
them.Visual approach to role mining simplifies the role engineering process.
ADVISER algorithm is implemented to represent the user permission assignments in a
better way. This representation in matrix format enables quick analysis and elicitation
of meaningful roles. t-SMAR algorithms would be implemented for permission usage
cardinality constraint which prevents the overburdening of a user with a large number
of permissions.

References

[1] A. Colantonio, R. Di Pietro, A. Ocello, and N.V. Verde, “Visual Role

Mining:A Picture Is Worth a Thousand Roles,” IEEE Trans. Knowledge
andData Eng., vol. 24, no. 6, pp. 1120-1133, June. 2012.

[2] E.J. Coyne, “Role-Engineering,” Proc. ACM Workshop Role-Based Access
Control (RBAC ’95), pp. 15-16, 1995.

[3] S. DeCapitani , S. Foresti, P. Samarati, and S. Jajodia, “Access Control
Policies and Languages,” Int’l J. Computational Science and Eng., vol. 3, no.
2, pp. 94-102, 2007.

[4] J.D.Fekete, J.J. Wijk, J.T. Stasko, and C. North, “The Value of Information
Visualization,” Information Visualization: Human- Centered Issues and
Perspectives, pp. 1-18, 2008.

[5] D.Ferraiolo, R.S.Sandhu, S.Gavrila, R. Kuhn, and R. Chandramouli,
“Proposed NIST Standard for Role-Based Access Control,” ACM Trans.
Information and System Security, vol. 4, pp. 224-274,2001.

V. Thangamani & V. Uma Maheswari

526

[6] R. Kumar, S. Sural, and A. Gupta, “Mining rbac roles under cardinality
constraint”,Proc.6th international conference on Information systems
security(ICISS'10),pp.171-185, 2010

[7] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo, “Evaluating Role
Mining Algorithms,” Proc. 14th ACM Symposium on Access Control Models
and Technologies (SACMAT ’09), pp. 95-104, 2009.

