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Abstract 
 
Role Based Access Control (RBAC) is an effective way of managing 
permissions assigned to a large number of users in an enterprise. This 
paper offers a new role engineering approach to RBAC, referred to as 
visual role mining. The key idea is to graphically represent user-
permission assignments to enable quick analysis and elicitation of 
meaningful roles with constraint. There are two algorithms: ADVISER 
and t-SMAR. The former is a heuristic used to best represent the user-
permission assignments of a given set of roles. The latter is a heuristic 
algorithm that, when used in conjunction with ADVISER, allows for a 
visual elicitation of roles with permission usage cardinality constraint. 
 
Index Terms: Access controls, data and knowledge visualization, 
mining methods, constraint. 

 
1. Introduction 
Access control is the process of mediating requests to data and services maintained by 
a system, determining which requests should be granted or denied [3]. Significant 
research has focused on providing formal representation of access control models. 
Among all proposed models, Role Based Access Control (RBAC) [5] has become the 
norm in most organizations. This success is greatly due to its simplicity: a role 
identifies a set of permissions; users, in turn, are assigned to roles based on their 
responsibilities. To implement a RBAC system, it is important to devise a complete set 
of roles. This design task, known as role engineering [2], has been recognized as the 
costliest part of a RBAC-oriented project. Recently, there has been an increasing 
interest in using automated role engineering techniques [7]. All of them seek to 
identify de facto roles embedded in existing access permissions. Since these 
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approaches usually resort to data mining techniques, the term role mining is often used 
as a synonym. Despite much work dedicated to the design of role mining algorithms, 
existing techniques deal with three main practical issues: meaning of elicited roles, 
noise within data, and correlations among roles. 

To address the aforementioned issues, visual role mining is devised [1]. RBAC 
roles are managed as visual patterns. The rationale behind this approach is that visual 
representations of roles can actually amplify cognition, leading to optimal analysis 
results [4].Visualization of the user-permission assignments is performed in such a 
way to isolate the noise, allowing role engineers to focus on relevant patterns without 
resorting to traditional role mining tools. Further, correlations among roles are shown 
as overlapping patterns, hence providing an intuitive way to discover and utilize these 
relations. The proper representation of user-permission assignments allows role 
designers to gain insight, draw conclusions, and design meaningful roles from both IT 
and business perspectives. 

Constraints are an important aspect of RBAC and sometimes argued to be the 
principal motivation of RBAC. Recently, the problem of defining different kind of 
constraints on the number and the size of the roles included in the resulting role set has 
been addressed. Permission Usage cardinality constraint is one of the cardinality 
constraint which restricts the maximum number of permissions that can be included in 
a role. Cardinality constraints on the number of permissions included in a role have 
been firstly considered in [6], and a heuristic algorithm called Constrained Role Miner 
(CRM) has been proposed. The remainder of this paper is organized as follows. 
Section II provides detailed description of visual approach with permission usage 
constraint. The algorithms ADVISER and t-SMAR are discussed in this section. 
Section III shows the experimental results and finally, section IV provides conclusion. 

 
2. Heuristics 
This section describes two heuristics such as ADVISER (Access Data VISualizER) 
and t-SMAR(t-Simple role Mining Algorithm). The overall system architecture is 
represented by Fig. 1. 

 

 
Fig. 1: System Architecture. 
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2.1 ADVISER 
This algorithm is able to provide a compact representation of a given set of roles. In 
particular, it reorders rows and columns of the user-permission matrix to minimize the 
fragmentation of each role. Fig. 2 explains ADVISER Algorithm.  
 

 
Fig. 2: ADVISER Algorithm. 

 
Detailed description follows 

1. Rows and columns are sorted independently. ADVISER decomposes the 
optimal matrix-permutation problem into two sub problems, that is users (Line 
2) and permissions (Line 3) are sorted independently. Due to this symmetry, 
from now on we generically refer to rows and columns as items. If some items 
are assigned to the same set of roles, they are put together. For this reason, the 
algorithm sorts groups of items, called item sets, instead of individual items. 
Line 7 identifies items assigned to the same roles. 

2. Item set positions are decided one-by-one. In order to facilitate a better 
representation of large roles, item sets involving roles with larger areas are 
analyzed first. Line 9 implements this behavior. Let I,I` be two item sets. 
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assusers and assperms denotes the number of users and number of permissions 
respectively. I is consider before I` only if 

Max |assusers(r)*assperms(r)| > Max|assusers(r`)*assperms(r`)| 
r€roles(I)\roles(I`)  r`€roles(I`)\roles(I`) 
when roles(I)\roles(I`) or roles(I`)\roles(I`)=0 then Max=0. 

3. The algorithm tries to avoid large gaps by putting item sets close to each other 
when they share large roles. For this Jaccard coefficient metric is 
used.Calculate jaccard coefficient for ranking the similarity of items. 

∑  |m(r)| 
r€roles (a) roles (b) 
Jacc ({a}, {b}) = ---------------------------------------------------- 
∑  |m(r)| 
r€roles (a)  roles (b) 

where m(.) is the membership function assusers(.) when we sort permissions, or the 
function assperms(.) when we sort users. 

4. Each item set is preferentially positioned at the beginning or at the end of 
already sorted item sets. The idea is to avoid to “worsen” already found, high 
similarities. Lines 10-26 implement the item set sorting strategy by deciding a 
position p for the item set I in an item set permutation. The first two item sets 
are just inserted in the first two positions (lines 10-11). Then, subsequent item 
sets are inserted among already-sorted item sets only when this operation 
actually improves the existing sorting. 

5. Item set sorting is converted to item sorting. This is the When all item sets in 
ITEMS have been sorted, they are “expanded” (Line 28) to return the ordering 
of each single item in ITEMS—instead of providing an ordering for group of 
items that share the same roles. 

 
2.2. t-SMAR  
This algorithm takes as input the matrix UPA and returns a complete role set satisfying 
the cardinality constraint (i.e., at most t permissions are associated to each role). 

The basic idea is to select from UPA all rows having less than t permissions in an 
order that will be defined below. Such rows will correspond to candidate roles that will 
be added to the candidate role-set. If there is no row having at most t permissions, then 
a row is selected and, t of the permissions included in the row is chosen. The selected 
permissions induce a role that is added to the candidate role-set. Then, all rows covered 
by the candidate row-set are removed from UPA and the procedure is iterated until the 
UPA matrix contains some rows. The above sketched procedure is more formally 
described by t-SMAR algorithm where we use the following notation. Given an a x b 
binary matrix M, for 1 ≤ i ≤ a, with M[i], |M[i]| denotes the M`s i-th row and number 
of one’s appearing in M[i] respectively.  

The procedures numCols (M) and numRows (M), return the number of columns 
and rows, respectively, of the matrix M. For a set S and integer h, the procedure 
first(S,h) returns the first h elements listed in the set S. Given a user-permission 
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assignment matrix UPA, a new candidate role is generated by selecting a UPA's row 
having the least number of permissions with ties broken at random (Lines 6-8 of t-
SMAR). If the number of permissions associated to the selected row is at most t, then a 
new role is created (Line 9 of t-SMAR). The new role, containing all permissions 
associated to the selected row, is then added to the candidate role-set (Line 21 of t-
SMAR). In this algorithm, the matrix uncoveredP represents the user’s permissions that 
are not covered by the roles in candidateRoles. After discover a role to be added to the 
candidateRoles set, running setToZero Algorithm. All rows whose permissions are 
covered by the candidate roles are removed from both matrices uncoveredP and UPA 
removeCoveredUsers's pseudo-code is quite similar to the pseudo-code for setToZero. 
Algorithm halts when all UPA's rows have been removed (Line 5 of t-SMAR). If the 
number of permissions exceeds the cardinality constraint, then two possible ways of 
selecting the role to be added to the candidate role-set have been considered. These 
two possibilities gave rise to two heuristics referred to as t- SMAR-0 and t-SMAR-1, 
respectively. Fig. 3 and Fig. 4 explains the t-SMAR and SetToZero Algorithm 
respectively, 

 

 
Fig. 3: t-SMAR Algorithm. 
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In t-SMAR-0 (i.e., when selection is set to 0 in t-SMAR), the new role will simply 
contain the first t permissions associated to the selected row (Lines 10-11 of t-SMAR). 
While, in t-SMAR -1 (i.e., when selection is set to 1 in t-SMAR) select a row (Lines 13-
16 of t-SMAR) of the matrix uncoveredP having the least number of permissions, ties 
broken at random. In other words, selects a row (i.e, a users) having the least number 
of permissions still uncovered. If the selected row is associated to more than t 
permissions, then the new role will only include its first t permissions (Lines 17-19 of 
t-SMAR). This algorithm returns a set of roles (i.e., rows and subsets of rows) exactly 
covering the UPA matrix. The following SetToZero pseudo code updates the matrix 
uncoveredP according to newRole.  

 

 
Fig. 4: SetToZero Algorithm. 

 
The roles produced by t-SMAR are used in conjunction with ADVISER, allows for 

a visual elicitation of roles with permission usage cardinality constraint. 
 

3. Experimental Results 
In this section results obtained by the evaluation of ADVISER and t-SMAR are 
discussed. Fig. 5 shows the results obtained when using ADVISER fed with the 
predefined roles. Fig. 6 shows the results obtained when using ADVISER fed with the 
roles generated by t-SMAR. 
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Fig. 5: Visual representation of 
predefined roles  

Fig. 6: Visual Representation of roles with 
constraint 

 
4. Conclusion 
Devising a complete set of roles is necessary to implement a RBAC system. This is 
accomplished by bottom up approach called Role Mining. The bottom up approach 
starts with existing user permission assignments and attempts to derive roles from 
them.Visual approach to role mining simplifies the role engineering process. 
ADVISER algorithm is implemented to represent the user permission assignments in a 
better way. This representation in matrix format enables quick analysis and elicitation 
of meaningful roles. t-SMAR algorithms would be implemented for permission usage 
cardinality constraint which prevents the overburdening of a user with a large number 
of permissions. 
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