
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 6 (2014), pp. 571-576
© International Research Publications House
http://www. irphouse.com

Component Based Software’s: Issues Related to Test the
Compatibility of the Components

Damini Yadav1 and Jagdeep Kaur2

1CSE-M.TECH, ITM University,
Village- Sanpaka, P.O- Pataudi, Dist-Gurgaon, Haryana, INDIA

2ITM University, Department of CSE/IT, ITM University, Gurgaon, INDIA

ABSTRACT

Component-based software development is an emerging new phase in
software development because complex software’s are developed from the
integration of reusable components instead of developing everything from the
very beginning each time. Component-based development is however still not
mature process and there still exist many problems such as its maintenance,
integration, testing and its compatibility with the existing system and so on.
Often, components selected by functional features are incompatible or the
integration effort required is too high. So doing the selection of components
based on compatibility can simplify the integration task. Therefore in this
paper, we discuss the various issues related to test the compatibility of the
components.

Keywords:- Commercial off the shelf(COTS), Compatibility issues

1. INTRODUCTION
Component Based Software Engineering (CBSE) researchers over the last decades
have created many tools and techniques that facilitate assembling large and complex
systems from independent components. Despite their many advantages, these
technologies also tend to push many problems and complexities into configuration
and integration activities, [1]. Each component considers as black boxes, connected
through links carry out some functionality but hide how they implement that
functionality. These functionalities work as the base to build interconnections among
components. Components as black boxes expose Ports which are used as connection
points at a component’s boundary; such ports are generally called Module
Interconnection Languages (MIL) or Interface Definition Languages (IDL). Links are
the association among the components’ ports, [2]. The purpose of ports and links is to

572 Damini Yadav and Jagdeep Kaur

enable components to co-operate to produce a desired joint functionality. Each
component has multiple versions and there are complex dependencies between
components and their different versions. Developers of component-based face many
problems as first, it is very difficult to test all possible configurations of such a large
number of components and their versions. Second, the components and their
dependencies can change without notice. Commercially off the Shelf (COTS)
components are integrated into the software products to reduce development time and
effort. Even if extensively tested in isolation and in several contexts, system
integrators must re-test COTS components in the specific contexts to look for possible
integration faults not revealed in previous contexts. In practice, developers often
approach this problem by conducting compatibility testing. So, component’s
compatibility can be checked and developers can verify components that match their
requirements, functionality attributes prior of integrating them into their system.

2. OBJECTIVE
The objective of Compatibility Testing is to satisfy the consistent and relevant system
requirement with high quality and reliability components for software development.
Component development will lead to the final components with the help of the
Compatibility testing which will select and test the candidate components that satisfy
the requirements with correct and expected results. The system architecture are design
to collect the users requirement, identify the system specification, select appropriate
system architecture, and determine the implementation details such as platform,
programming languages, etc.

3. STEPS
The different steps involved in the development process of component-based systems
are, [3]:

 Find components which may be used in the system
 Select the components which meet the requirements of the system
 Alternatively, create a proprietary component to be used in the system
 Adapt the selected components so that they suit the existing component model

or requirement specification
 Compose and deploy the components using a framework for components
 Replace earlier with later versions of components.

4. VARIOUS ISSUES
4.1 MATERIALS AND METHODS
Many organizations and companies are spending much time in reusable component
selection since the choice of the appropriate components has a major impact on the
project and resulting product, [4]. The component selection process is not defined so
each project finds its own approach to it. Here a proper method should be introduce
which supports the search, evolution and selection of reusable software and provides

Component Based Software’s: Issues Related to Test the Compatibility 573

specific techniques for defining the evolution criteria, comparing the cost and benefits
of alternatives and consolidating the evolution results in decision making.

4.2 THE PHYSICAL PROPERTIES OF SOFTWARE COMPONENETS
It is commonly known that when building new systems, software developers are
concerned with two main dimensions:

 Customer requirements: Functional, Non-functional
 System requirements: Syntactic, Semantic

 These are the two different types of components matching: behavioral and
structural matching, [5]. The ideal scenario where a component can be considered as
an exact match to the requirements of the system is achieving both types of matching.
For a component to be fully operational one satisfying the behavioral match is not
enough, hence some work should be done in verifying the characteristics of the
structural match. This structure of a component is named as its physical properties
and these are define as the set of characteristics that a component must satisfy in order
to match the structure imposed by a system. These characteristics constitute part of
component’s interfaces which are distinct in nature and different from one structural
type to another. As a result, it is useful to utilize the characteristics defined by
components physical properties to establish the basis for verifying component
compatibility to system requirement. Various Physical Properties are shown in figure
1.

Figure 1.Physical Properties of Componenets

4.3 NEW VERSIONS
To keep their products competitive in the market vendors frequently release new
versions of popular components. Consequently, software engineers often update
COTS components integrated in their systems with either new versions of the same
products or equivalent products, to keep the overall system up-to-date and
competitive, [6]. After each update, test designers must design and execute regression
test suites, to check that no new faults should be introduced in the system and verify
its compatibility with the existing system. Checking the compatibility of all
candidates may be extremely time consuming. So work should be done to tackle both
the problem of generating efficient regression testing for compatible COTS
components and compatibility testing among alternative components. Figure 2, shows
generation of prioritized regression and compatibility test suites.

574 Damini Yadav and Jagdeep Kaur

Figure 2. Generation of Prioritized Regression and Compatibility Test Suites

4.4 ROLES AND COMPATIBILITY PATTERNS
A “role” represents the possibility for components involved in the interaction to
perform different, complementary responsibilities. Roles are a natural concept in
patterns, architectures, architectural styles, etc. Where two or more components
interact with each other is refer as “compatibility pattern”. It is responsibility of the
compatibility check mechanisms to determine which component is actually going to
interact, based on the patterns their respective suppliers have specified. Hence, the
role of the components should be specified properly for better interaction and
compatibility between components. The various compatibility patterns discuss so far
are shown in figure 3.

Figure 3.Compatibility Patterns

4.5 NETWORK EXTERNALITIES
Network externalities are the effects on a user of a product or service of others using
the same or compatible products or service. Positive network externalities arise when
customers value a product more if it is compatible with other consumers’ products. In
markets with network externalities compatible designs may emerge as the preferred
choice by producers, [7]. Network externalities are a source of scale economies that
arise from the demand side of the market. Hence, a compatible technological design

Component Based Software’s: Issues Related to Test the Compatibility 575

should be adopted to increase the value that consumers derive from a firm’s product.
Compatibility gives the benefits of other firms’ networks to the consumers.

5. CONCLUSION
It is necessary to focus on each of the issues discuss above in order to understand and
determine whether a newly designed component will physically fit and function
within an already built system. A developer must first identify the characteristics and
their values precisely, in order to ensure that the proper code and architectural
interface can be used to verify software components before the integration. So the
main consideration is given for providing the notion of architectural interface to verify
a wider range of physical properties of components written in different programming
languages. For successful component integration at the source code level without any
compatibility issues we need the designing of a tool to check automatically the
availability of the characteristics in the structural interface of software components.

6.REFERENCES

[1] Il-Chul Yoon, Alan Sussman, Atif Memon, Adam Porter, ” Direct-
Dependency-based Software Compatibility Testing”, 2007.

[2] Alberto Sillitti, Giampiero Granatella, Paolo Predonzani, Tullio Vernazza,
”Dealing With Software ComponentsCompatibility”.

[3] Ivica Crnkovi´c, article in a regular journal, Journal of Computing and
Information Technology, ” Component-Based Software Engineering—New
Challenges in Software Development”, 2003.

[4] Muhammad Osama Khan, Ahmed Mateen, Ahsan Raza Sattar in American
Journal Of Software Engineering and Applications, “Optimal performance
model investigation in component-based software engineering (CBSE)”, 2013.

[5] Basem Y. Alkazemi, Department of Computer Science, Umm Al-Qura
University, Makkah, Saudi Arabia appeared in International Journal of
Software Engineering & Applications (IJSEA), ”On Verification Of Software
Components”, 1998.

[6] Leonardo Mariani, Sofia Papagiannakis and Mauro Pezz`e in 29th International
Conference on Software Engineering, IEEE, ” Compatibility and regression
testing of COTS-component-based software”, 2007.

[7] Giancarlo Succi, Andrea Valerio, Tullio Vernazza, Gianpiero Succi Appeared
in ACM StandardView, ”Compatibility, Standards and Software Production”,
1998.

576 Damini Yadav and Jagdeep Kaur

