
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 7 (2014), pp. 687-692
© International Research Publications House
http://www. irphouse.com

Implementing AGILE in Small Organizations

Ashish Agrawal1, Sadhana Singh2, Malay Tripathi3, L.S. Maurya4

1, 2, 3 Software Engineering, SRMS CET (UPTU) Bareilly, INDIA
4CS/IT (HOD), SRMS CET (UPTU) Bareilly, INDIA

ABSTRACT

To make quality centric software is ultimately the aim of every software
organization either it is small or big. But sometimes, to achieve their aim
becomes a white elephant for many small organizations because of some
factors like a number of limited resources, small number of employees, time
constraints, financial limitations etc. It has been seen that whenever a new
concept develops, large organizations easily bear it but small organizations
can’t due to implementation cost and fear of unsuccessful. In the chain of
software development models the current one is Agile Methodologies, which
in turn more reliable, more dependable and more realistic in comparison to
other ones. Agile methods not only provide agility but also transparency. This
paper is an attempt to provide a way to implement this model in small
organization so that these small organizations can also achieve the same level
as of large organizations.

Keywords- Agile; Improvement; Quality; Agile Methods; Small
organizations.

1. INTRODUCTION
In 2001, AGILE Alliance firstly coined the term agile manifesto which was a
collection of principles and values related to agile software development methods.
These methods are time boxed, iterative and incremental methods that works
between self organizing, self motivated and cross functional teams. Since from the
development of waterfall model many other models like iterative model prototype
model, evolutionary model, spiral models and now agile are developed. The basic
goal behind all these models was to make customer more satisfied, to increase ROI
and to build high quality product. For example, in 2002, Mark Paulk, promoter of
CMM stated (Paulk 2002), “Many of the practices in the agile methodologies are
good practices that should be thoughtfully considered for any environment.”

688 Ashish Agrawal et al

 Table 1 is the brief one line description of some methods related to agile and it
also shows pros and cons of these methods. Though, there are some cons but the use
of these methods can reduce the number of cons presented with older software
development approaches.

Table 1. Agile Methods and their Pros and Cons

AGILE Methods One Line Description Pros Cons

Whole Team
Development

Respect everyone’s
ideas and include every
member.

P1-Improve
quality planning
P2-Gain
commitment from
everyone

C1-Require high level
of communication
from the entire team

Pair Programming One coder and one
tester on same module.
‘Two minds are better
than one.’

P1-Reduce
bottleneck
P2-Increases
flexibility of
making changes

C1-Lack of
compatibility
C2-Mismatched skills

SCRUM Iterative and
incremental approach
that welcome changing
requirements of
customer.

P1-Team work
together to
improve quality

C1Purpose of meeting
may lost

Extreme
Programming(XP)

Continuous integration
and testing and risk
estimation at all levels.

P1-Customer
interest &
priorities
P2-Lead to more
useful products

C1-Communication
gaps
C2-Customer may
become designer of
system

KANBAN Ensures that a
particular activity is on
time and will provide a
product.

P1-Identifies
build issues early
and Risk
reduction

C1-More work for
developers

Planning Poker Group activity that
estimates project scope
without influencing
anyone’s ideas.

P1- More
accurate estimate

C1- Difficulty in
making a consensus

Code Refactoring Improve internal
structure of code for
getting better output.

P1- Reduced no.
of errors
P2- Quality
Product

C1- More time is
required

 Due to fear of failure, small organizations are restricted to follow old methods
and roadmaps and so take long time to reach at a better stage and even failed to better
good products. But one point that should be forgotten here is that these small

Implementing AGILE in Small Organizations 689

organizations can be more enthusiastic, competitive and productive because they are
keen to do much better.
 But the question still remains, “what is a way to let them perform better”? The
bottom line is that software process improvement should be done to help the
business-not for its own sake. This is true for both large organizations and small [1].
Yet small organizations, just like large ones, will have problems with undocumented
requirements, the mistakes of inexperienced managers, resource allocation, training,
peer reviews, and documenting the product. Despite these challenges, small
organizations can be extraordinarily innovative [1]. As Hoffman expresses it, “Don’t
require process that doesn’t make sense.” This paper is an attempt to find out a way
to use agile methods in small organizations.
 After giving introduction in the first section, the remaining part of the paper is
organized as follows. In section 2 we present the background and the related work. In
section 3 have described the proposed model. Finally we conclude the paper in
section 4.

2. LITERATURE REVIEW
Agile methods are a subset of iterative and evolutionary methods and are based on
iterative enhancement and opportunistic development processes. In all iterative
products, each iteration is a self-contained, mini-project with activities that span
requirements analysis, design, implementation, and test [7] [2].
 Agile methodologies and principles place emphasis on incremental software
development with short iterations, adaptation to changing requirements, close
communication, self-organizing teams, and simplicity [8] [5]. A similar survey
conducted by Version One [8] additionally reports enhanced ability to manage
changing priorities and significantly improved project visibility. For this reason, agile
methods are especially suitable for development of information systems with
changing and emergent user requirements [6] [3]. A key difference between agile
methods and past iterative methods is the length of each iteration. In the past,
iterations might have been three or six months long. With agile methods, iteration
lengths vary between one to four weeks [5] [2]. In this paper our aim is to look on
the use of agile methods in small organizations. Yet the definition of ‘small’ may
ambiguous. In 1998 SEPG conference panel on the CMM and small projects [9],
small was defined as “3-4 months in duration with 5 or fewer staff”. Brodman and
Johnson defined a small organization as fewer than fifty software developers
[4].Organization can be termed as small in terms of the kind of projects it takes for
development, number of resources it have, number of employees, process and
techniques used for the product development etc.

3. PROPOSED MODEL
As we have mentioned earlier, the objective of this paper is to provide a way for using
new methods with old one, the proposed model is explained as follows-

690 Ashish Agrawal et al

3.1. Requirement analysis with Planning Poker
The first phase, requirement analysis is the most crucial phase because the whole
project is developed on the basis of results obtained at this phase. Though, SRS
(software requirement specification) provides a specification for most important
requirements and gives a glance of project’s feasibility. But sometimes the results get
influenced by senior authorities or managers. Planning poker is the solution for these
kinds of situations. Planning poker, a card activity in which every team member
choose a card of his choice about the feasibility and effort estimation of the project.
Then everyone shows their cards at the end without getting anchored by someone.
Then on the basis of consensus, team decides they will go on with project or not. So,
by using this activity, better results can be yield from this phase.

3.2. In house planning with whole team development
Before putting the project on the floor, some planning is required for the proper
development and progress of the project. Let’s have a look on this situation-
 “Senior managers-we have decided everything and you have to follow our plans-
coding technique…, time limit…..
 Team members- If we do this in that way then…the output…..
 Senior managers- Meeting is over and you all are supposed to follow this
particular plan.”
 The result from this situation would be in terms of low quality product developed
by uninterested people. But if every team member was involved, product would be in
better quality state.

3.3. Design with scope for change and updation
Before developing the software its design is drawn in terms of software product
entities and their real world relationships. Every design must have a scope for
incorporating changing requirements without reflecting any negative impact. And this
can be done if the process is based on iterative and incremental approach that let a
software designer do changes even after late in software development. With this
approach the advantage is, if customer request for any new feature then you don’t
have to design the whole product from scratch. This will not only save time but also
the development cost.

3.4. Coding and Testing with Pair Programming
At this phase developers prepare actual working modules of software and then test
them for finding bugs and errors. Normally it is a two way process –coding and
testing. But for small organizations where resources are limited, pair programming
can serve as a better approach. In pair programming, two team members do work o0n
the same module, one is known as driver (who code the module) and the other one is
known as navigator (who keep check the code being written). Due to this continuous
checking, many defects get caught at the coding stage so result in small testing phase.

3.5. Production with iterative and incremental approach
Production should not be a one shot game. Instead it should be iterative so that we can

Implementing AGILE in Small Organizations 691

show that prepared modules to and can assure him about his product development.
This will lead to a greater customer satisfaction and trust on organization.

3.6. Crystal clear communication
Communication is the soul of any organization and bad communication is the devil in
any organization. If there is not proper communication present in organization then
this may lead to a bad and unhealthy working environment. Crystal Clear approach
focuses on communication with no manipulation. Communication exists between the
employees, with customers or with the senior members. There should be good and
direct communication to customers otherwise developers may interpret customer’s
requirements wrongly.

3.7. Documentation at every step
Proper documentation works as a good backup if any disaster happens and also works
as a learning tool for new employees. This prevents developers to reinvent and
reorganize the whole procedure for the common problem. Documentation needs to be
systematic and free from grammatical mistakes but it should not be lengthy and
complex. If graphical representations in the form of bar charts, Gantt charts and use
cases were made during software development then they should also be the part of the
documentation. Time duration, details and results of every meeting should be
documented.

4. CONCLUSIONS AND FUTURE WORK
By incorporating new methodologies, small organizations can achieve their goal in a
better way. This is possible only when senior management provide their support and
is ready to take risk. Agile methods defined in previous sections are very much related
to the basic steps of software development; the difference is just that they are more
realistic. Small organizations are not supposed to or bound to replace their original
methods but they should merge these new methods with old ones. So that not only
their process will be improved but also their position will be improved.
 This proposed model is a beginning to provide a modern yet simple way of
software development to small organizations. In future, further research can be done
on this model to make it better.

5. REFERENCES

[1] M.C. Paulk (1998), Using the CMM in Small Organizations, CMU, 1998.
[2] A. Agrawal, M. Tripathi, S. Singh (2013), AGILE: Boon for today’s software

industry-A Review, IJSRP, vol.3, issue12, ISSn-2250-3153.
[3] V. Manhic (2011), A Case Study on Agile Estimating and Planning using

Scrum, ISSN 1392 – 1215.

692 Ashish Agrawal et al

[4] D. L. Johnson and J. G. Brodman (1998), “Applying the CMM to Small
Organizations and Small Projects,” Proceedings of the 1998 Software
Engineering Process Group Conference, Chicago, IL, 9-12 March .

[5] E. Arisholm, member, IEEE, Hans Gallis, Tore Dyba (2007), Member, IEEE
Computer Society, and Dag I.K. Sjoberg, Member, IEEE , IEEE Transactions
On Software Engineering, Vol. 33, No. 2.

[6] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio (2007),
“Evaluating Performances Of Pair Designing In Industry,” Journal Of Systems
And Software, Vol. 80, No. 8, Pp. 1317–1327.

[7] L. Williams (2007), A Survey of Agile Development Methodologies.
[8] O. Salo, K. Kolehmainen, P. Kyllönen, J. Löthman, S. Salmijärvi, and P.

Abrahamsson (2004), Self-Adaptability of Agile Software Processes: A Case
Study on Post-Iteration Workshop, Springer Verlag.

[9] R. Hadden, “How Scalable is CMM Key Practices?” Crosstalk: The Journal of
Defense Software Engineering, Vol. 11, No. 4, April 1998, pp. 18-20, 23.

