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Abstract 
 

This paper begins by introducing the concept of Optimization in SQL Queries. 
The introductory section gives brief information on the strategies, an optimizer 
should follow. In order to examine the role of query optimization process in 
RDBMS, this paper will look at both static and dynamic process of 
optimization as well as all the general aspects of query optimization. The 
paper will then explore major principles of query optimization process with 
volcano query optimization. An enhancement to volcano query optimizer is 
proposed by adding some set of transformation rules and operators. The search 
space principle will elaborate various types of query tree. The search strategy 
principle will elaborate various search strategy techniques including dynamic 
and greedy algorithms that will play a big role in improving the overall 
efficiency of relational database systems. Finally, this paper ends with the 
conclusion of highlighted issues and solutions. 
 
Index Terms— query optimization, text database, volcano query optimizer, 
static & dynamic optimization, QEP 
 
 

1.0 INTRODUCTION TO Query Optimization 
t present, most of the relational database application programs are written in high-

level languages and integrating a relational language like SQL for query processing 
with the databases. Query processing is the process of translating a query expressed in 
a high-level language such as SQL into low-level data manipulation operations. While 
query optimization refers to the process by which the best execution strategy for a 
given query is found from a set of alternatives. There are mainly three steps involved 
in query processing: decomposition, optimization and execution. First step 
decomposes a relational query (a SQL query) using logical schema into an algebraic 
query. During this step syntactic, semantic and authorization are done. Second step is 
responsible for generating an efficient query execution plan (QEP-also called operator 
tree)[1] for the given SQL query from the considered search space. Third step 
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implements QEP. Query optimization in relational database systems has been a 
traditional research problem. A number of algorithms for optimizing queries have 
been proposed [2, 3]. They are based on a variety of paradigm [4], and work well for 
the traditional relational model. However, a number of recent proposals which 
enhance Codd’s [5] model require the modification of the existing algorithms to 
optimize the new set of queries that were not possible before.  
 There are two types of query optimization approaches [6]: static, and dynamic. 
Static approach consists of generating an optimal (or close to the optimal) execution 
plan, then executing it until the termination. All the methods, using this approach, 
suppose that the values of the parameters used (e.g. sizes of temporary relations, 
selectivity factors, availability of resources) to generate the execution plan are always 
valid during its execution. However, this hypothesis is often unwarranted. Indeed, the 
values of these parameters can become invalid during the execution due to several 
causes [7]. 
 The execution plans generated by a static optimizer can be sub-optimal. As far 
as the dynamic optimization approach, it consists in modifying the suboptimal 
execution plans at run-time. The main motivations to introduce ‘dynamicity’ into 
query optimization [9], particularly during the resource allocation process, are based 
on: (i) willing to use information concerning the availability of resources, (ii) the 
exploitation of the relative quasi-exactness of parameter values, and (iii) the 
relaxation of certain too drastic and not realistic hypotheses in a dynamic context (e.g 
infinite memory). 
 Selecting the optimal execution strategy for a query is NP-hard in the number of 
relations [10]. For complex queries with many relations, this incurs a prohibitive 
optimization cost. Therefore, the actual objective of the optimizer is to find a strategy 
close to optimal solution. The selection of the optimal strategy generally requires the 
prediction of execution cost of the alternative candidate ordering prior to actually 
executing the query. The execution cost is expressed as a weighted combination of I/ 
O, CPU, and Communication costs [11]. 
 The task of an optimizer is nontrivial since for a given SQL Query, there can be 
large number of possible operator trees: 
 The algebraic representation of the given query can be transformed into many 

other logically equivalent algebraic representations: e.g.,  
 Join(Join(A, B), C)= Join(Join(B, C), A) 
 For a given algebraic representation, there may be many operator trees that 

implement the algebraic expression, e.g., typically there are several join 
algorithms supported in a database system. 

 Query optimization can be viewed as a difficult search problem. In order to 
solve the problem, it is needed to provide: 
 A space of plans (search space)  
 A cost estimation technique so that a cost may be assigned to each plan in the 

search space. Intuitively, this is an estimation of the resources needed for the 
execution of the plan 

 An enumeration algorithm that can search through the execution space. 
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 A desirable optimizer is one where (1) the search space includes plans that have 
low cost (2) the costing technique is accurate (3) the enumeration algorithm is 
efficient. Each of these three tasks is nontrivial and that is why building a good 
optimizer is an enormous undertaking. Representative examples of extensible query 
optimizers include Starburst [12], Volcano [13], and OPT++ [14]. This paper reports a 
study to enhance the Volcano extensible query optimizer to support a relational 
algebra with temporal operators such as temporal join and aggregation. 
 New algorithms can be added to a DBMS via, e.g., user-defined routines in 
Informix [15] or PL/SQL procedures in Oracle, but these methods currently do not 
allow to define functions that take tables as arguments and return tables [16]; nor do 
they allow to specify transformation rules, cost formulas, and selectivity-estimation 
formulas for the new functions. Because of these limitations, a middleware 
component with query processing capabilities was introduced, which divides the 
query processing between itself and the underlying DBMS [17]. Intermediate 
relations can be moved between the middleware and the DBMS by the help of transfer 
operators. 
 To adequately divide the processing, the middleware has to take optimization 
decisions—for this purpose, we employ the Volcano extensible middleware 
optimizer. Use of a separate middleware optimizer allows us to take advantage of 
transformation rules and cost and selectivity-estimation formulas specific to the 
temporal operators. There are two main advantages of using Volcano Optimizer. The 
first is that Volcano has gained widespread acceptance in the industry as a state-of-
the-art optimizer; the optimizers of Microsoft SQL Server [18] and Tandem Server-
Ware SQL Product [19] are based on Volcano. Secondly, the Volcano optimization 
framework is not dependent on the data model or on the execution model. This makes 
Volcano extensible to new data models. DBMS has its own optimizer; therefore, the 
middleware optimizer does not have to focus on optimizing query parts to be passed 
to the DBMS for evaluation.  
 This paper is outlined as follows. Section I provides the introduction to query 
optimization and also discuss briefly about the strategies, an optimizer should follow. 
Section 2, describe Volcano’s architecture, including its search space generation and 
plan-search algorithms. Section 3 describes the enhancements to Volcano. The 
algebraic framework is described first, with a focus on the parts that posed challenges 
to Volcano. Then the modification to the search-space generation and plan-search 
algorithms of Volcano is described, then, the new set of transformation rules and 
operators has been proposed to work with volcano query optimizer. Various search 
strategies has also been introduced in this section. Section 4 evaluate Cost Model. 
Section 5 summarizes the paper with conclusion. 
 Study of decomposition & execution steps of query processing, is outside the 
scope of this paper. 
 
 
2.0 Description of Volcano Optimizer 
Volcano optimizer is extensively used to optimize SQL queries. It optimizes queries 
in two stages. First, the optimizer generates the entire search space consisting of 
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logical expressions generated using the initial query plan (to which the query is 
mapped to) and the set of transformation rules. The search space is represented by a 
number of equivalence classes. An equivalence class may contain one or more 
logically equivalent expressions, also called elements; each of these includes an 
operator, its parameter (for example, predicates for the selection), and pointers to its 
inputs (which are also equivalence classes). Consider a simple example query, which 
performs a join on the EmpId attribute of POSITION and SALARY relations. It’s one 
possible initial plan is shown in Figure 1(a) and its search space is shown in Figure 
1(b). 

 

 
 

Figure 1: Initial Query Plan 
 
 The elements of classes 1 and 2 represent logical expressions returning partial 
results of the query, i.e., the operators retrieving, respectively, the POSITION and 
SALARY relations. The elements of class 3 represent logical expressions returning 
the result of the complete query; either the first or the second element may be used. 
Essentially, the given search space represents only two plans which differ in the order 
of the join arguments. 
 During the second stage of Volcano’s optimization process, the actual search for 
the best plan is performed. Here, the implementation rules are used to replace 
operators by algorithms, and the costs of diverse sub-plans are estimated. For the 
given query, the number of plans to be considered is greater than two, because the 
relations may be retrieved by using either full scan or index scan, and the join has 
several implementations, such as nested-loop, sort-merge, or index join. One possible 
evaluation plan is to scan both relations and perform a nested-loop join. 
 The following two sections describe the search-space generation and the plan-
search algorithms in more detail. 
 
2.1 Stage One: Search-Space Generation 
The two main functions for the search-space generation are Generate and MatchRule. 
In these functions initially one element is created for each operator in the original 
query expression, and then Generate function is invoked on the top element. The 
Generate function repeatedly invokes the MatchRule function, which applies a 
transformation rule to the given element, choosing from the list of applicable rules 
that have not so far been applied to the element (as found by the FindMatchRule 
function in MatchRule). The application of a transformation rule in MatchRule may 
trigger the creation of new elements and classes; for each newly generated element, 
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the Generate function is invoked.  
 For the query in Figure 1(a), the search space is generated as follows. Initially, 
three elements representing the three query-tree operators are created (first elements 
of equivalence classes 1–3 in Figure 1(b)). Then, the Generate function is invoked for 
the first element of class 3, which, in turn, invokes Generate for the first elements of 
classes 1 and 2. The latter two Generate calls do not do anything because no rules 
apply to the elements of class 1 and 2. For the first element of class 3, however, the 
join commutativity rule is applied, and a second element pointing to switched join 
arguments is added to class 3. Then, the MatchRule function is invoked on the new 
element of class 3, but no new elements are generated: the join commutativity rule is 
applied again, but its resulting right-hand element already exists in the search space. 
 
2.2 Stage Two: Plan Search 
When searching for a plan, the Volcano optimizer employs dynamic programming in 
a top-down manner, and it uses two mutually recursive functions, FindBestPlan and 
Optimize. 
 First, the optimizer invokes the FindBestPlan function for the first element of 
the top equivalence class—e.g., class 3 in Figure 1(b)—and the cost limit infinity (the 
cost limit can be lower in subsequent calls to the function). If all elements of the class 
containing the argument element have already been optimized, no further 
optimization for the element is necessary: if the plan has been found and its cost is 
lower than the cost limit, it is returned, otherwise NULL is returned. However, if the 
optimization for the class has not been completed, the function is invoked.  
 The Optimize function for each algorithm implementing the top operator (in our 
case, join) recursively invokes the FindBestPlan function for the inputs of the 
algorithm. The RemainingCost argument is used to prune the search when it is clear 
that the search would not come up with a more efficient plan than the current one. If 
optimization of the inputs is successful, and if the found plan is the first for the 
equivalence class containing the argument element or it beats the cost of the existing 
best plan, it is saved along with its cost. 
 Once all algorithms are considered for the operator, the Optimize function 
invokes the FindBestPlan function for each equivalent logical expression (in our case, 
for the second element in equivalence class 3) and looks if it can find a better plan. In 
case a better plan is found, it is saved in memory as the best one. Once all elements of 
the input-element class are considered, the algorithm marks that the optimization of 
the class is completed.  
 
 
3.0 Enhancement of Volcano Optimizer 
The implementation of the algebra and its accompanying transformation rules 
introduces several concepts that did not exist previously in Volcano. We describe 
these new concepts in Section 3.1. Sections 3.2 and 3.3 concern the actual 
implementation and describe the modifications of the Volcano search-space 
generation and plan-search algorithms. 
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3.1 Algebra and Transformation Rules 
First, we overview the architecture for which the algebra has been designed. Next, we 
describe the actual algebra, the accompanying transformation rules, and their 
applicability, focusing on the new concepts. 
 Architecture The temporally extended relational algebra has been designed for 
an architecture consisting of a middleware component and an underlying DBMS. 
Expensive temporal operations such as temporal aggregation do not have efficient 
algorithms in the DBMS, but can be evaluated efficiently by the middleware, which 
uses a cursor to access DBMS relations. Consequently, query processing is divided 
between the middleware and the DBMS; the main processing medium is still the 
DBMS, but the middleware is used when this can yield better performance. 
 
3.1.1 ALGEBRA 
This algebra is different from the conventional relational algebra in several aspects. 
First, it includes temporal operators such as temporal join and temporal aggregation. 
Next, it contains two transfer operators, TM and TD, that allow to partition the query 
processing between the middleware and the underlying DBMS. The TM operator 
transfers a relation from the DBMS to the middleware, and the TD operator performs 
the opposite. Finally, the algebra provides a consistent handling of duplicates and 
order at logical level, by treating duplicate elimination and sorting as other logical 
operators and by introducing six types of equivalences between relations.  
 Figure 4 shows two temporal relations (relations having two attributes that 
encode a time period), POSITION and SALARY. We assume a closed-open 
representation for time periods and assume the time values for T1 and T2 denote 
months during some year. For example, Tom was occupying position Pos1 from 
February to August (not including the latter). 

 
POSITION 

Pos Id EmpId EmpName T1 T2 
Pos1 1 Tom 2 8 
Pos2 2 Jane 3 8 

SALARY 
Emp Id Amount T1 T2 

1 100K 2 6 
1 120K 6 9 
2 110K 3 8 

RESULT-SET 
Emp Id Emp Name Pos Id Amount (K) T1 T2 

1 Tom Pos1 100 2 6 
1 Tom Pos1 120 6 8 
2 Jane Pos2 110 3 8 

 
Figure 4: Relations POSITION, SALARY and the Result Set of Temporal Join. 
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 A temporal join is a regular join, but with a selection on the time attributes, 
ensuring that the joined tuples have overlapping time periods; Figure 4 shows the 
result of temporal join on the EmpId attribute of the POSITION and the SALARY 
relations. 
 
3.1.2 Transformation Rules : 
Six types of equivalences lead to six types of transformation rules, since a 
transformation rule may satisfy several of the six equivalences. Let us consider two 
rules for temporal join, T (regular join, but with a selection on the time attributes, 
ensuring that the joined tuples have overlapping time periods). For a given rule, we 
always specify the strongest equivalence type that holds; the ordering of equivalence 
types is given in Figure 5. The another rule exploits the fact that all temporal join 
algorithms in the middleware retain the sorting of their left arguments. 

 
 

Figure 5: Ordering of Equivalence Types 
 

3.2 The Search Strategy  
One central component of a query optimizer is its search strategy or enumeration 
algorithm. The enumeration algorithm of the optimizer determines which plans to 
enumerate, and classically is based on dynamic programming. 
 There are basically two approaches to solve this problem. The first approach is 
the deterministic strategies that are proceeded by building plans, starting form base 
relations, joining one more relation at each step till the complete plans are obtained. 
When constructing QEPs through dynamic programming, equivalent partial plans are 
constructed and compared on some cost model. To reduce the optimization cost, 
partial plans that are not likely to lead to the optimal plan are pruned (discarded) as 
soon as possible, and the cheaper partial plans are retained and used to construct the 
full plan. A greedy strategy builds only one such plan using depth-first search, while 
dynamic programming builds all possible plans breadth-first. The other approach is 
the randomized strategies that concentrate on searching the optimal solution around 
some particular points. They do not guarantee that the optimal plan is obtained, but 
avoid the high cost of optimization, in terms of memory and time consumption [20].  
 
3.2.1 Deterministic Strategies 
In this section, the basic deterministic strategies, i. e. dynamic programming and 
greedy algorithm will be discussed as well as a brief discussion of a combination 
approach of both algorithms. 
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3.2.1.1 Dynamic Programming 
This algorithm is pioneered in IBM’s System R project [21] and it is used in almost 
all commercial database products [22]. The basic dynamic programming for query 
optimization as presented in [8]. It works in bottom-up way by building more 
complex sub-plans from simpler sub-plans until the complete plan is constructed. In 
the first phase, the algorithm builds access plan for every table in the query. 
Typically, there are several different access plans for a relation (table). If relation A, 
for instance, is replicated at sites S1 and S2, the algorithm would enumerate table-
scan (A, S1) and table-scan (A, S2) as alternative access plans for table A. In the 
second phase, the algorithm enumerates all two-way join plans using the access plans 
as building blocks. Again, the algorithm would enumerate alternative join plans for all 
relevant sites; i. e. consider carrying out joins with A at S1 and S2. Next, the 
algorithm builds three-way join plans, using access-plans and two-way join plans as 
building blocks. The algorithm continues in this way until it has enumerated all n-way 
join plans. In the third phase, the n-way join plans are massaged by the finalizePlans 
function so that they become complete plans for the query;  
 In DBMS, neither table-scan (A, S1) nor table-scan (A, S2) may be immediately 
pruned in order to guarantee that the optimizer finds a good plan. Both plans do the 
same work, but they produce their result at different sites. Even if table-scan (A, S1) 
is cheaper than table-scan (A, S2), it must be kept because it might be a building 
block of the overall optimal plan if, for instance, the query results are to be presented 
at S2. Only if the cost of table-scan (A, S1) plus the cost of shipping A from S1 to S2 
is lower than the cost of table-scan (A, S2), table-scan (A, S2) is pruned. 
 Lanzelotte et al. [20] addressed an important issue, i.e. which plans are 
equivalent in order to prune the expensive ones? At first glance, equivalent partial 
plans are those that produce the same result (tuples). In fact, the order of resulting 
tuples is important equivalence criterion. The reason is that in the presence of sort-
merge join; a partial with a high cost could lead to a better plan, if a sort operation 
could be avoided. The researchers made some experiments showing that dynamic 
programming performs better than a randomize strategy for queries with small 
number of relations, but this situation is inverted when the query has 7 relations or 
more. 
 
3.2.1.2 Greedy Algorithm  
As an alternative to dynamic programming, greedy algorithms have been proposed. 
These greedy algorithms run much faster than dynamic programming, but they 
typically produce worse plans [23]. Just like dynamic programming, this greedy 
algorithm has three phases and constructs plans in a bottom-up way. It makes use of 
the same accessPlans, joinPlans, and finalizePlans functions in order to generate 
plans. However, in the second phase this greedy algorithm carries out a very simple 
and rigorous selection of the join order. With every iteration of the greedy loop, this 
algorithm applies a plan evaluation function, in order to select the next best join. 
Obviously, the quality of the plans produced by this algorithm strongly depends on 
the plan evaluation function [9]. 
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4.0 Cost Model 
Lanzelotte, Valduriez, and Zait [12] introduced a cost model that captures all aspects 
of parallelism and scheduling. They define the cost estimate of a QEP containing only 
join nodes. All formulas given below compute response time and they simply refer to 
it by cost. In addition to the traditional assumptions, uniform distribution of values 
and independence of attributes, they also assume that tuples of a relation are 
uniformly partitioned among nodes of different homes, and there is no overlap 
between nodes of different homes, although several relations may share the same 
home. 
 In the following, R refers to a base relation of the physical schema, and N to the 
operation captured by QEP node. P denotes, in the same time, a QEP and the transient 
relation produced by that QEP. The parameters, database schema or system 
parameters used in the cost model are shown in Table 1 
 An optimal execution of the join operation requires each operand to be 
partitioned the same way. For example, if p and q are both partitioned on n nodes 
using the same function on the join attribute, the operation join(p, q) is equivalent to 
the union of n parallel operations join(pi, qi), with I = 1, …, n. If the above mentioned 
condition is not satisfied, parallel join algorithm attempt to make such condition 
available by recognizing the relations, i. e. dynamically repartitioning the tuples of the 
operand relations on the nodes using the same function on the join attribute. 
 

Table 1: Cost model parameters. 
 

card(R)  Number of tuples in relation R 
width(R)  Size of one tuple of relation R 
cpu  CPU speed 
network  Network speed 
packet  The size of packet 
Send The time for a send operation 
receive  The time for a receive operation 

 
 
 First, estimate the cost of partitioning an operand relation R. Obviously, if the 
relation is appropriately partitioned, this cost is 0. Let # source be the number of 
nodes over which R is partitioned, and # dest be the number of nodes of the 
destination home. Each source node contains card(R)/ # source tuples. Thus it will 
send card(R) * width(R)/ (n * packet) packets. If we assume that tuples will be 
uniformly distributed on destination nodes, then each node will receive card(R)/ # 
dest tuples, and thus will process card (R) * width(R)/ (m * packet) incoming packets. 
Since a destination node starts processing only when first packet arrives, the cost of 
repartitioning R on # dest nodes is: 
 cost (part(R)) = max((card(R) * width(R)/ (# source * packet)) * send, (card(R 
)* width(R)/ (# dest * packet)) * receive + send + packet/ network) 
 The cost of joining tuples of p and q, where p and q are, respectively, the 
pipelined and stored operands of the join operation, is: 
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 cost (join(p, q)) = max(costalg (join(p, q)), cost(part(p))) + cost(part(q)). 
where costalg(join(p, q)) is the cost to process the join at one node. It depends on the 
join algorithm used. The partitioning of p is performed simultaneously to the join 
processing, after the repartitioning of q has completed. 
 
 
5.0 Conclusions  
We have studied the problem of distributed query optimization. We focus on the 
major optimization issues being addressed in distributed databases. We have seen that 
a query optimizer is mainly consists of three components: The search space, the 
search strategy, and the cost model. Different kinds of search spaces are discussed 
with different schedules. Search strategies, the central part of the optimizer, can be 
seen as two classes. We have shown that all published algorithms of the first class, i. 
e. deterministic strategies, have exponential time and space complexity and are 
guaranteed to find the optimal plan. Whereas, the big advantage of the algorithms of 
the second class, i. e. randomized algorithms, is that they have constant space 
overhead. Typically, randomized algorithms are slower than heuristics and dynamic 
programming for simpler queries but this is inverted for large queries. Randomized 
strategies do not guarantee to find the optimal plan. Some cost models are discussed 
and the basic parameters for parallel environment are shown. 
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