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Abstract 
 

With the growing developments and advancements in the fields of 
computing, it is necessary for institutions and organizations to handle 
large masses of data at faster speeds. Not only are the sizes of data 
increasing, so are the varied file types. Due to the inadequacy of 
traditional file management systems to handle this kind of large data, a 
need for a more appropriate system arose. This need led to the 
introduction and development of Big Data Technology. Big Data 
Technology includes different modules capable of moving beyond 
exabytes of data. In this paper, we provide a comparison between 
relational and non-relational database systems, their uses, 
implementations, advantages and disadvantages. Apart from this, we 
also provide an in-depth overview of the modules related to Hadoop, a 
Big Data management framework.  
Keywords: Big Data, Apache Hadoop, NoSQL, Databases 
 

1. Introduction  
The exponential growth of data in today’s world has necessitated a paradigm shift in 
the way we manage and process data. Various fields such as banking, business 
informatics, meteorology, sports and medicine have felt the need for expanding the 
horizons of data management and mining. The traditional structure of relational 
database systems is not accoutered to handle this kind of data. Hence, the 
advancement into what is known as Big Data Technology today was not only 
unavoidable but also inexorable.  
 The need to look beyond traditional and relational databases led to the introduction 
of the non-relational databases such as the NoSQL (Not Only SQL). The NoSQL 
architecture was designed to address the problems of massive horizontal scalability 
and agility. In this paper, we draw comparisons between the relational and non-



870  Anand Loganathan et al 
 

 

relational databases, their advantages, disadvantages and uses. But when analyzing 
the capabilities of non-relational databases, we discover that it is not a convincing 
solution to handle the accretion of Big Data. To undertake the problem of the same, 
Hadoop, an open source data computing framework has led the way, providing the 
solution with a number of modules to tackle all aspects of Big Data and its 
implementations. The modules we look at are HDFS, MapReduce, Pig, Hive, JAQL,  
HBase, Flume, Sqoop, Oozie, Zookeeper,  YARN, Mahout, Ambari, Spark, Whirr, 
Hue, Lucene, Chukwa, Hama, Cassandra, and Impala. Each module serves its own 
purpose in the large Hadoop ecosystem, right from administration of large clusters of 
datasets to query management. By studying each module and attaining knowledge on 
it, we can effectively implement solutions to Big Data. 
 
2. Comparison of various databases 
Traditional database is any structured collection of data which stores information in 
an organized way such that the desired information can be quickly selected from the 
database. In traditional databases, the files included a lot of duplicated data causing 
redundancy problems. This was solved by using a relational database model where 
each piece of data had varied relationships with other pieces of data. There is no 
predefined hierarchical order for the data or for its representation. In a relational 
DBMS, the information is stored in set of tables where each one has its own unique 
identifier or primary key. The tables are then related to one another using foreign 
keys. Data storage in a RDBMS is better because undesirable data redundancy can be 
circumvented making the data management comparatively easier. Failure to normalize 
the data might pose as a challenge to users, and with increasing complexity and size 
of data, non-relational database was introduced.  
 NoSQL[1] is one such type of non-relational database architecture. NoSQL does 
not impose any limits to the variety and size of data thereby helping it attain 
horizontal scalability by following the highly optimized key-value store format. 
NoSQL databases also have a structure to store data, but these structures are less strict 
as relational schema, so it became a better choice for some applications. It is 
important to say that NoSQL databases are a complement in database field, and not a 
replacement for RDBMS. If the data is huge and complex, the traditional DBMS tools 
can fail to handle it.  
 Big Data is data which goes beyond terabytes and is often unstructured. Big Data 
addresses the problem of 4 V’s: (1) Volume: Data at rest; from terabytes to zettabytes 
of existing data to process; (2) Velocity: Data in motion; streaming data and 
processing them between a time frame of milliseconds and seconds; (3) Variety: Data 
in many forms; the various files types of data and the magnitude of structured-ness; 
(4) Veracity: Data in doubt; inconsistency, incompleteness, latency, ambiguity in data.  
To handle big data, Apache software foundation introduced a tool called Apache 
Hadoop.  
 Apache Hadoop[2] is an open source software framework for storage and large 
scale processing of datasets on clusters of commodity hardware. It is a framework 
comprising of several modules and in this paper, we discuss twenty two such modules 
related to Hadoop. All of these modules are designed under an assumption that it is 
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common to have a hardware problem, provide automatic fault tolerance and recovery, 
give better throughput, and is highly efficient. 
 
3. Hadoop components 
A. Hadoop Distributed File System (HDFS) 
HDFS, which stands for Hadoop Distributed File System[3], is a distributed file 
system which has been designed to handle large data sets to run on low cost hardware 
and provide high fault tolerance. HDFS enables streaming access to file system data 
on cost of relaxing few POSIX requirements. There are many components associated 
with Hadoop and each component gives a non-trivial probability of detection of 
faults, and quick, automatic recovery. In case any hardware failures, it can be easily 
recovered because a HDFS instance may consist of hundreds or thousands of server 
machines, each storing part of the file system’s data. Applications running on HDFS 
need streaming access to their data sets. HDFS is designed for more of batch 
processing than user interactive process. The emphasis is on high throughput of data 
access rather than low latency of the same.  
 

 
Fig. 1 Replication of Data in HDFS 

 
POSIX semantics in a few key areas have been relaxed to gain an augmentation in 
data throughput rates. A typical file in HDFS can range between gigabytes and 
terabytes in size. Thus, the HDFS is tuned to support large files. It provides high 
aggregate data bandwidth and scales to hundreds of nodes on a single cluster and also 
supports tens of millions of files on a single instance. Applications running on HDFS 
follow a write-once, read-many access models for all files. Once a file is created, it 
need not be changed except for the appends. This assumption simplifies the data 
coherency issues and enables high throughput data access. A MapReduce application 
or a web crawler application fits perfectly with this model. A HFDS cluster primarily 
consists of a NameNode that manages file system metadata and a DataNode that 
stores the actual data. It also creates duplicates of data in case a particular data 
becomes inaccessible or deleted.   
 
B. MapReduce 
To process a large set of data, MapReduce model is used. Typically, MapReduce[4] 
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model has two distinct tasks. The first is the Map task which takes data from a large 
pool, where individual elements are broken down into key-value pairs. The Reduce 
task takes the output from the executed Map task as input and combines those data 
tuples into a smaller set of key-value pairs. The Reduce job is always performed after 
the Map job. MapReduce achieves reliability by parceling out a number of operations 
on the set of data to each node in the network. Each node is expected to report back 
periodically with completed work and status updates. The MapReduce engine consists 
of a JobTracker and a TaskTracker. MapReduce Jobs are submitted to the JobTracker 
by the client. The JobTracker passes the job to the TaskTracker node which tries to 
keep the work close to the data. Since HDFS is a rack aware file system, the 
JobTracker knows which node contains the data, and which other machines are 
nearby.  If the work cannot be hosted on the actual node where the data resides, 
priority is given to nodes on the same rack. This reduces network traffic on the main 
backbone network. If a TaskTracker fails or times out, that part of the job is 
rescheduled. 
 
C. Yet Another Resource Navigator (YARN) 
The initial release of Hadoop faced problems where cluster was tightly coupled with 
Hadoop and there were several cascading failures. This led to the development of a 
framework called YARN[5] (Yet Another Resource Navigator). Unlike the previous 
version, the addition of YARN has provided with better scalability, cluster utilization 
and, user agility. The incorporation of MapReduce as a YARN framework has 
provided full backward compatibility with existing MapReduce tasks and 
applications. It promotes effective utilization of resources while providing distributed 
environment for the execution of an application. The advent of YARN has opened the 
possibilities of building new applications to be built on top of Hadoop.  
 
D. Pig 
The Apache Pig, includes a Pig Latin programming language for expressing data 
flows, is a high-level dataflow language which is used to reduce the complexities of 
MapReduce by converting its operators into MapReduce code. It uses SQL-like 
operations to be performed on large distributed datasets[6]. Pig makes use of both, the 
Hadoop Distributed File System as well as the MapReduce. Pig can run on two types 
of environments: the local environment in a single JVM or the distributed 
environment on a Hadoop cluster. The flow of data can be simple as well as complex, 
that is, nested. The script of Pig Latin is just like a Directed Acyclic Graph, where 
edges are the data flow and the nodes are operators that process the data[7]. One of 
the highlights of Pig is that unlike SQL, it does not require to have a schema, hence 
being apt for processing unstructured or semi-structured data. Pig has variety of scalar 
data types and standard data processing options. Pig supports Map data; a map being a 
set of key-value pairs. Most Pig operators take a relation as an input and give a 
relation as the output (LOAD & STORE respectively). It allows normal arithmetic 
operations and relational operations too. Apart from keywords and operators, 
everything else in Pig is case sensitive[8]. 
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E. Hive 
With traditional RDBMS not being accoutred enough to handle, store or process large 
data in efficient way and make it scalable, Apache Hive came into play. Apache Hive 
is a data warehouse built on top of Hadoop. The query language is known is HiveQL 
since it is also a SQL dialect; it is a high-level declarative language. Hive has its own 
DDL and DML commands and queries. Unlike most SQL having schema-on-write 
feature, Hive has schema-on-read and supports multiple schemas, which defers the 
application of a schema until you try to read the data. Though the benefit here is that it 
loads faster, the drawback is that the queries are relatively slower[9]. Hive supports 
variety of storage formats: TEXTFILE for plaintext, SEQUENCEFILE for binary 
key-value pairs, RCFILE stores columns of a table in a record columnar format. Hive 
lacks a few things compared to RDBMS though, for example, it is best suited for 
batch jobs not real-time application processing. Hive lacks full SQL support and does 
not provide row-level inserts, updates or delete[10]. This is where HBase, another 
Hadoop module is worth investing. 
 
F. HBase 
HBase is a non-relational distributed database model. HBase comes as a handy 
alternative to Hive which lacks full SQL support as mentioned earlier. HBase not only 
provides row-level queries but is also used for real-time application processing unlike 
Hive. Though HBase is not an exact substitute for traditional RDBMS, it offers both, 
linear and modular scalability and is strictly maintains consistency of read and write 
which in return helps in automatic failover support. A distributed system can only 
guarantee two of the three CAP (Consistency, Availability, and Partition Tolerance) 
properties. HBase convincingly implements the consistency and partition tolerance 
feature. HBase is a non-ACID (Atomicity, Consistency, Isolation, and Durability) 
compliant[11]. All these features make HBase different and unique and also the go-to 
tool for horizontal scaling of large datasets.  
 
G. JAQL 
JAQL is a JSON based query language, which is high-level just like Pig Latin and 
MapReduce. To exploit massive parallelism, JAQL converts high-level queries into 
low-level queries. Like Pig, JAQL also does not enforce the obligation of having a 
schema. JAQL supports a number of in-built functions and core operators. Input and 
Output operations on JAQL are performed using I/O adapters, which is responsible 
for processing, storing and translating and returning the data as JSON format[12].  
 
H. Flume 
Flume is a tool built by Cloudera that acts around the Hadoop cluster. It is used for 
efficiently collecting, aggregating and managing large sets of log data and streaming 
data into the HDFS. It is also known as a pseudo-distributed model for its ability to 
run several processes on a single machine. It was designed to address four problems: 
reliability, scalability, manageability and extensibility. It lets users to stream data 
from multiple sources and high volume logs for real-time analysis, scale them 
horizontally and ensure data delivery[13]. All these features of Flume make it robust 
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and agile. Flume is one of the rare tools with wide variety of fault tolerant and 
reliability mechanisms.  
 
I. Oozie 
With so many Hadoop jobs running on different clusters, there was a need for a 
scheduler when Oozie came into the scene. The highlight of Oozie is that it combines 
multiple sequential jobs into one logical unit of work. There are two basic types of 
Oozie jobs: Oozie Workflow Jobs which is more like a Directed Acyclic Graph, 
which specifies a sequence of jobs to be executed, and the other is Oozie Coordinator 
Jobs which are recurrent Workflow Jobs that are triggered by the date and time 
availability. Oozie Bundle helps packaging both the jobs and maintaining a proper 
lifecycle. The outputs of a workflow in Oozie become the input of the next workflow 
and this process is known as data application pipeline[14].  
 
J. Sqoop 
Sqoop is a tool which provides a platform for exchange of data between Hadoop and 
any relational databases, data warehouses and NoSQL datastore. The transformation 
of the imported data is done using MapReduce or any other high-level language like 
Pig, Hive or JAQL. It allows easy integration with HBase, Hive and Oozie. It 
provides parallel operation to be performed and also supports fault tolerance[15].  
 
K. Mahout 
Mahout[16] is a scalable machine learning library built on top of Hadoop 
concentrating on collaborative filtering, clustering and classification. With data 
growing at faster rate every day, Mahout solved the need for remembering yesterday’s 
methods to process tomorrow’s data. It supports a gamut of machine learning 
algorithms to go about with its task. Apart from the machine learning algorithms, it 
also supports a number of clustering algorithms like k-means, dirichlet, mean-shift, 
and canopy.  
 
L. Zookeeper 
Zookeeper is a high performance coordination service for distributed applications 
where distributed processes coordinate with each other through a shared hierarchical 
name space of data registers. Zookeeper is associated with certain aspects that are 
required while designing and developing some coordination services. The 
configuration management service helps storing configuration data and sharing the 
data across all nodes in the distributed setup. The naming service allows one node to 
find a specific machine in a cluster of thousands of servers. The synchronization 
service provides the building blocks for Locks, Barriers and Queues. The locking 
service allows serialized access to a shared resource in the distributed system. The 
Leader Election service helps to recover the system from automatic failure[17]. 
 
M. Avro 
Avro is a RPC (Remote Procedure Call) data serialization system focussed on 
dynamic access, platform independence and evolution of a schema. The RPC in Avro 
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supports cross-language access and permits different versions of services to 
interoperate. It supports rich data structures with schema describe via JSON. The data 
in Avro is compressible and dividable and consists of arbitrary metadata. It can also 
include data with different schemas in the same file and detect them dynamically[18]. 
In near future, Hadoop’s RPC mechanism is likely to be replaced completely by Avro.  
 
N. Ambari 
Ambari is a tool for provisioning, managing, and monitoring Hadoop clusters. The 
huge collection of operator tools and APIs hide the complexity of Hadoop thereby 
simplifying the operation of and on clusters. Irrespective of the size of the cluster, 
Ambari simplifies the deployment and maintenance of the host. It pre-configures 
alters for watching the Hadoop services and visualizes and displays the cluster 
operations in a simple web interface. The job diagnostic tools help to visualize job 
interdependencies and view timelines for historic job performance execution and 
troubleshooting for the same[19]. The latest version contains HBase multi-master, 
controls for host and simplified local repository setup. 
O. Lucene 
Lucene is an open source project for open source full text search. The core of 
Lucene[20] provides supports spell checking, hit highlighting and advanced 
tokenization capabilities. It consists of a high performance search server built using 
Lucene Core known as Solr (pronounced as Solar) providing XML/HTTP and JSON 
APIs. It supports faceting, highlighting and caching beside replication and sharding 
capabilities.  
 
P. Spark 
Spark is a fast and general engine for large scale data processing. It is an alternative to 
MapReduce for some cases. It is a low latency cluster computing system[21]. It can 
run programs upto 100 times faster than MapReduce in memory or 10 times faster on 
disk. It offers over 80 high-level operators that make it very easy to build parallel and 
scalable apps. It combines SQL, streaming and complex analytics.  
 
Q. Cassandra 
Cassandra[22] was developed to address the problem of traditional databases. It 
follows NoSQL structure and thereby produces linear scalability and provides fault-
tolerance by automatically replicated to multi nodes on commodity hardware or any 
other cloud infrastructure services. It boasts of lower latency and inhibits regional 
outages. It is decentralized, elastic and has highly available asynchronous operations 
which are optimized with various features.  
 
R. Hama 
Hama[6] is a parallel matrix computation framework for massive scientific 
calculations, distributed computing, large-scale numerical analysis and data mining. It 
uses Bulk Synchronous Parallel (BSP) computing methodology. It uses Hadoop RPC 
for communication. The architecture consists of two main components: (1) 
BSPMaster which maintains GroomServer statuses, scheduling jobs, control faults, 
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provide cluster control to users and maintaining job progress information, (2) 
GroomServer to perform BSP tasks and report status to master.  
 
S. Chukwa 
Chukwa[23] is a data collection system for monitoring large distributed systems. It is 
built on top of the HDFS and MapReduce framework and inherits Hadoop’s 
scalability and robustness. It transfers data to collectors and saves data to HDFS. It 
contains data sins which stores raw unsorted data. A functionality called Demux is 
used to add structures to create Chukwa records which eventually go to the database 
for analysis. It includes a flexible toolkit for displaying, monitoring and analyzing 
results to make a better use of the collected data.  
T. Whirr 
Whirr[24] is a set of libraries for running cloud services. It provides high-level 
interaction between Hadoop and the cloud. It is based on JClouds. Clusters can be 
created as per the need using Whirr. The advantage of using Whirr is that it gives 
independence from Cloud vendor and makes it easier to move from them when 
required. Cluster can be used and expanded as per demand and can be reduced when 
not needed. It can compress data to reduce costs.  
 
U. Impala  
Impala is an open source query language for massive parallel processing developed by 
Cloudera that runs natively on Hadoop. The key benefits of using Impala is that it can 
perform interactive analytics in real-time, reduce data movement and duplicate 
storage thereby reducing costs and providing integration with leading Business 
Intelligence tools. 
 
V. Hue 
Hue stands for Hadoop User Experience[25]. It is an open source GUI for Hadoop, 
developed by Cloudera. Its goal is to let user free from worries about the underlying 
and backend complexity of Hadoop. It has a HDFS file browser, YARN & 
MapReduce Job Browser, HBase and Zookeeper browser, Sqoop and Spark editor, a 
query editor for Hive and Pig, app for Ozzie workflows, access to shell and app for 
Solr searches.  
 
4. Conclusion 
Despite the fact that NoSQL and Hadoop may be better suited for large amounts of 
data, it is not the recommended solution or the replacement for all problems. Only in 
the case of data sets exceeding exabytes demanding large scalability and complexity 
is Hadoop a suitable option. Apart from clarifying on the capabilities of each system, 
this paper provides an insight on the functionalities of the various modules in the 
Hadoop ecosystem. 
With data growing every day, it is evident that Big Data and its implementations are 
the technological solution of the future. Soon, almost all industries and organizations 
around the world will adopt Big Data technology for data management. 
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