
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 9 (2014), pp. 869-878
© International Research Publications House
http://www. irphouse.com

A Systematic Approach to Big Data
Exploration of the Hadoop Framework

Anand Loganathan, Ankur Sinha, Muthuramakrishnan V.,
and Srikanth Natarajan

Dept of Computer Science & Engineering, SRM University

Chennai, India

Abstract

With the growing developments and advancements in the fields of
computing, it is necessary for institutions and organizations to handle
large masses of data at faster speeds. Not only are the sizes of data
increasing, so are the varied file types. Due to the inadequacy of
traditional file management systems to handle this kind of large data, a
need for a more appropriate system arose. This need led to the
introduction and development of Big Data Technology. Big Data
Technology includes different modules capable of moving beyond
exabytes of data. In this paper, we provide a comparison between
relational and non-relational database systems, their uses,
implementations, advantages and disadvantages. Apart from this, we
also provide an in-depth overview of the modules related to Hadoop, a
Big Data management framework.
Keywords: Big Data, Apache Hadoop, NoSQL, Databases

1. Introduction
The exponential growth of data in today’s world has necessitated a paradigm shift in
the way we manage and process data. Various fields such as banking, business
informatics, meteorology, sports and medicine have felt the need for expanding the
horizons of data management and mining. The traditional structure of relational
database systems is not accoutered to handle this kind of data. Hence, the
advancement into what is known as Big Data Technology today was not only
unavoidable but also inexorable.
 The need to look beyond traditional and relational databases led to the introduction
of the non-relational databases such as the NoSQL (Not Only SQL). The NoSQL
architecture was designed to address the problems of massive horizontal scalability
and agility. In this paper, we draw comparisons between the relational and non-

870 Anand Loganathan et al

relational databases, their advantages, disadvantages and uses. But when analyzing
the capabilities of non-relational databases, we discover that it is not a convincing
solution to handle the accretion of Big Data. To undertake the problem of the same,
Hadoop, an open source data computing framework has led the way, providing the
solution with a number of modules to tackle all aspects of Big Data and its
implementations. The modules we look at are HDFS, MapReduce, Pig, Hive, JAQL,
HBase, Flume, Sqoop, Oozie, Zookeeper, YARN, Mahout, Ambari, Spark, Whirr,
Hue, Lucene, Chukwa, Hama, Cassandra, and Impala. Each module serves its own
purpose in the large Hadoop ecosystem, right from administration of large clusters of
datasets to query management. By studying each module and attaining knowledge on
it, we can effectively implement solutions to Big Data.

2. Comparison of various databases
Traditional database is any structured collection of data which stores information in
an organized way such that the desired information can be quickly selected from the
database. In traditional databases, the files included a lot of duplicated data causing
redundancy problems. This was solved by using a relational database model where
each piece of data had varied relationships with other pieces of data. There is no
predefined hierarchical order for the data or for its representation. In a relational
DBMS, the information is stored in set of tables where each one has its own unique
identifier or primary key. The tables are then related to one another using foreign
keys. Data storage in a RDBMS is better because undesirable data redundancy can be
circumvented making the data management comparatively easier. Failure to normalize
the data might pose as a challenge to users, and with increasing complexity and size
of data, non-relational database was introduced.
 NoSQL[1] is one such type of non-relational database architecture. NoSQL does
not impose any limits to the variety and size of data thereby helping it attain
horizontal scalability by following the highly optimized key-value store format.
NoSQL databases also have a structure to store data, but these structures are less strict
as relational schema, so it became a better choice for some applications. It is
important to say that NoSQL databases are a complement in database field, and not a
replacement for RDBMS. If the data is huge and complex, the traditional DBMS tools
can fail to handle it.
 Big Data is data which goes beyond terabytes and is often unstructured. Big Data
addresses the problem of 4 V’s: (1) Volume: Data at rest; from terabytes to zettabytes
of existing data to process; (2) Velocity: Data in motion; streaming data and
processing them between a time frame of milliseconds and seconds; (3) Variety: Data
in many forms; the various files types of data and the magnitude of structured-ness;
(4) Veracity: Data in doubt; inconsistency, incompleteness, latency, ambiguity in data.
To handle big data, Apache software foundation introduced a tool called Apache
Hadoop.
 Apache Hadoop[2] is an open source software framework for storage and large
scale processing of datasets on clusters of commodity hardware. It is a framework
comprising of several modules and in this paper, we discuss twenty two such modules
related to Hadoop. All of these modules are designed under an assumption that it is

A Systematic Approach to Big Data : Exploration of the Hadoop Framework 871

common to have a hardware problem, provide automatic fault tolerance and recovery,
give better throughput, and is highly efficient.

3. Hadoop components
A. Hadoop Distributed File System (HDFS)
HDFS, which stands for Hadoop Distributed File System[3], is a distributed file
system which has been designed to handle large data sets to run on low cost hardware
and provide high fault tolerance. HDFS enables streaming access to file system data
on cost of relaxing few POSIX requirements. There are many components associated
with Hadoop and each component gives a non-trivial probability of detection of
faults, and quick, automatic recovery. In case any hardware failures, it can be easily
recovered because a HDFS instance may consist of hundreds or thousands of server
machines, each storing part of the file system’s data. Applications running on HDFS
need streaming access to their data sets. HDFS is designed for more of batch
processing than user interactive process. The emphasis is on high throughput of data
access rather than low latency of the same.

Fig. 1 Replication of Data in HDFS

POSIX semantics in a few key areas have been relaxed to gain an augmentation in
data throughput rates. A typical file in HDFS can range between gigabytes and
terabytes in size. Thus, the HDFS is tuned to support large files. It provides high
aggregate data bandwidth and scales to hundreds of nodes on a single cluster and also
supports tens of millions of files on a single instance. Applications running on HDFS
follow a write-once, read-many access models for all files. Once a file is created, it
need not be changed except for the appends. This assumption simplifies the data
coherency issues and enables high throughput data access. A MapReduce application
or a web crawler application fits perfectly with this model. A HFDS cluster primarily
consists of a NameNode that manages file system metadata and a DataNode that
stores the actual data. It also creates duplicates of data in case a particular data
becomes inaccessible or deleted.

B. MapReduce
To process a large set of data, MapReduce model is used. Typically, MapReduce[4]

872 Anand Loganathan et al

model has two distinct tasks. The first is the Map task which takes data from a large
pool, where individual elements are broken down into key-value pairs. The Reduce
task takes the output from the executed Map task as input and combines those data
tuples into a smaller set of key-value pairs. The Reduce job is always performed after
the Map job. MapReduce achieves reliability by parceling out a number of operations
on the set of data to each node in the network. Each node is expected to report back
periodically with completed work and status updates. The MapReduce engine consists
of a JobTracker and a TaskTracker. MapReduce Jobs are submitted to the JobTracker
by the client. The JobTracker passes the job to the TaskTracker node which tries to
keep the work close to the data. Since HDFS is a rack aware file system, the
JobTracker knows which node contains the data, and which other machines are
nearby. If the work cannot be hosted on the actual node where the data resides,
priority is given to nodes on the same rack. This reduces network traffic on the main
backbone network. If a TaskTracker fails or times out, that part of the job is
rescheduled.

C. Yet Another Resource Navigator (YARN)
The initial release of Hadoop faced problems where cluster was tightly coupled with
Hadoop and there were several cascading failures. This led to the development of a
framework called YARN[5] (Yet Another Resource Navigator). Unlike the previous
version, the addition of YARN has provided with better scalability, cluster utilization
and, user agility. The incorporation of MapReduce as a YARN framework has
provided full backward compatibility with existing MapReduce tasks and
applications. It promotes effective utilization of resources while providing distributed
environment for the execution of an application. The advent of YARN has opened the
possibilities of building new applications to be built on top of Hadoop.

D. Pig
The Apache Pig, includes a Pig Latin programming language for expressing data
flows, is a high-level dataflow language which is used to reduce the complexities of
MapReduce by converting its operators into MapReduce code. It uses SQL-like
operations to be performed on large distributed datasets[6]. Pig makes use of both, the
Hadoop Distributed File System as well as the MapReduce. Pig can run on two types
of environments: the local environment in a single JVM or the distributed
environment on a Hadoop cluster. The flow of data can be simple as well as complex,
that is, nested. The script of Pig Latin is just like a Directed Acyclic Graph, where
edges are the data flow and the nodes are operators that process the data[7]. One of
the highlights of Pig is that unlike SQL, it does not require to have a schema, hence
being apt for processing unstructured or semi-structured data. Pig has variety of scalar
data types and standard data processing options. Pig supports Map data; a map being a
set of key-value pairs. Most Pig operators take a relation as an input and give a
relation as the output (LOAD & STORE respectively). It allows normal arithmetic
operations and relational operations too. Apart from keywords and operators,
everything else in Pig is case sensitive[8].

A Systematic Approach to Big Data : Exploration of the Hadoop Framework 873

E. Hive
With traditional RDBMS not being accoutred enough to handle, store or process large
data in efficient way and make it scalable, Apache Hive came into play. Apache Hive
is a data warehouse built on top of Hadoop. The query language is known is HiveQL
since it is also a SQL dialect; it is a high-level declarative language. Hive has its own
DDL and DML commands and queries. Unlike most SQL having schema-on-write
feature, Hive has schema-on-read and supports multiple schemas, which defers the
application of a schema until you try to read the data. Though the benefit here is that it
loads faster, the drawback is that the queries are relatively slower[9]. Hive supports
variety of storage formats: TEXTFILE for plaintext, SEQUENCEFILE for binary
key-value pairs, RCFILE stores columns of a table in a record columnar format. Hive
lacks a few things compared to RDBMS though, for example, it is best suited for
batch jobs not real-time application processing. Hive lacks full SQL support and does
not provide row-level inserts, updates or delete[10]. This is where HBase, another
Hadoop module is worth investing.

F. HBase
HBase is a non-relational distributed database model. HBase comes as a handy
alternative to Hive which lacks full SQL support as mentioned earlier. HBase not only
provides row-level queries but is also used for real-time application processing unlike
Hive. Though HBase is not an exact substitute for traditional RDBMS, it offers both,
linear and modular scalability and is strictly maintains consistency of read and write
which in return helps in automatic failover support. A distributed system can only
guarantee two of the three CAP (Consistency, Availability, and Partition Tolerance)
properties. HBase convincingly implements the consistency and partition tolerance
feature. HBase is a non-ACID (Atomicity, Consistency, Isolation, and Durability)
compliant[11]. All these features make HBase different and unique and also the go-to
tool for horizontal scaling of large datasets.

G. JAQL
JAQL is a JSON based query language, which is high-level just like Pig Latin and
MapReduce. To exploit massive parallelism, JAQL converts high-level queries into
low-level queries. Like Pig, JAQL also does not enforce the obligation of having a
schema. JAQL supports a number of in-built functions and core operators. Input and
Output operations on JAQL are performed using I/O adapters, which is responsible
for processing, storing and translating and returning the data as JSON format[12].

H. Flume
Flume is a tool built by Cloudera that acts around the Hadoop cluster. It is used for
efficiently collecting, aggregating and managing large sets of log data and streaming
data into the HDFS. It is also known as a pseudo-distributed model for its ability to
run several processes on a single machine. It was designed to address four problems:
reliability, scalability, manageability and extensibility. It lets users to stream data
from multiple sources and high volume logs for real-time analysis, scale them
horizontally and ensure data delivery[13]. All these features of Flume make it robust

874 Anand Loganathan et al

and agile. Flume is one of the rare tools with wide variety of fault tolerant and
reliability mechanisms.

I. Oozie
With so many Hadoop jobs running on different clusters, there was a need for a
scheduler when Oozie came into the scene. The highlight of Oozie is that it combines
multiple sequential jobs into one logical unit of work. There are two basic types of
Oozie jobs: Oozie Workflow Jobs which is more like a Directed Acyclic Graph,
which specifies a sequence of jobs to be executed, and the other is Oozie Coordinator
Jobs which are recurrent Workflow Jobs that are triggered by the date and time
availability. Oozie Bundle helps packaging both the jobs and maintaining a proper
lifecycle. The outputs of a workflow in Oozie become the input of the next workflow
and this process is known as data application pipeline[14].

J. Sqoop
Sqoop is a tool which provides a platform for exchange of data between Hadoop and
any relational databases, data warehouses and NoSQL datastore. The transformation
of the imported data is done using MapReduce or any other high-level language like
Pig, Hive or JAQL. It allows easy integration with HBase, Hive and Oozie. It
provides parallel operation to be performed and also supports fault tolerance[15].

K. Mahout
Mahout[16] is a scalable machine learning library built on top of Hadoop
concentrating on collaborative filtering, clustering and classification. With data
growing at faster rate every day, Mahout solved the need for remembering yesterday’s
methods to process tomorrow’s data. It supports a gamut of machine learning
algorithms to go about with its task. Apart from the machine learning algorithms, it
also supports a number of clustering algorithms like k-means, dirichlet, mean-shift,
and canopy.

L. Zookeeper
Zookeeper is a high performance coordination service for distributed applications
where distributed processes coordinate with each other through a shared hierarchical
name space of data registers. Zookeeper is associated with certain aspects that are
required while designing and developing some coordination services. The
configuration management service helps storing configuration data and sharing the
data across all nodes in the distributed setup. The naming service allows one node to
find a specific machine in a cluster of thousands of servers. The synchronization
service provides the building blocks for Locks, Barriers and Queues. The locking
service allows serialized access to a shared resource in the distributed system. The
Leader Election service helps to recover the system from automatic failure[17].

M. Avro
Avro is a RPC (Remote Procedure Call) data serialization system focussed on
dynamic access, platform independence and evolution of a schema. The RPC in Avro

A Systematic Approach to Big Data : Exploration of the Hadoop Framework 875

supports cross-language access and permits different versions of services to
interoperate. It supports rich data structures with schema describe via JSON. The data
in Avro is compressible and dividable and consists of arbitrary metadata. It can also
include data with different schemas in the same file and detect them dynamically[18].
In near future, Hadoop’s RPC mechanism is likely to be replaced completely by Avro.

N. Ambari
Ambari is a tool for provisioning, managing, and monitoring Hadoop clusters. The
huge collection of operator tools and APIs hide the complexity of Hadoop thereby
simplifying the operation of and on clusters. Irrespective of the size of the cluster,
Ambari simplifies the deployment and maintenance of the host. It pre-configures
alters for watching the Hadoop services and visualizes and displays the cluster
operations in a simple web interface. The job diagnostic tools help to visualize job
interdependencies and view timelines for historic job performance execution and
troubleshooting for the same[19]. The latest version contains HBase multi-master,
controls for host and simplified local repository setup.
O. Lucene
Lucene is an open source project for open source full text search. The core of
Lucene[20] provides supports spell checking, hit highlighting and advanced
tokenization capabilities. It consists of a high performance search server built using
Lucene Core known as Solr (pronounced as Solar) providing XML/HTTP and JSON
APIs. It supports faceting, highlighting and caching beside replication and sharding
capabilities.

P. Spark
Spark is a fast and general engine for large scale data processing. It is an alternative to
MapReduce for some cases. It is a low latency cluster computing system[21]. It can
run programs upto 100 times faster than MapReduce in memory or 10 times faster on
disk. It offers over 80 high-level operators that make it very easy to build parallel and
scalable apps. It combines SQL, streaming and complex analytics.

Q. Cassandra
Cassandra[22] was developed to address the problem of traditional databases. It
follows NoSQL structure and thereby produces linear scalability and provides fault-
tolerance by automatically replicated to multi nodes on commodity hardware or any
other cloud infrastructure services. It boasts of lower latency and inhibits regional
outages. It is decentralized, elastic and has highly available asynchronous operations
which are optimized with various features.

R. Hama
Hama[6] is a parallel matrix computation framework for massive scientific
calculations, distributed computing, large-scale numerical analysis and data mining. It
uses Bulk Synchronous Parallel (BSP) computing methodology. It uses Hadoop RPC
for communication. The architecture consists of two main components: (1)
BSPMaster which maintains GroomServer statuses, scheduling jobs, control faults,

876 Anand Loganathan et al

provide cluster control to users and maintaining job progress information, (2)
GroomServer to perform BSP tasks and report status to master.

S. Chukwa
Chukwa[23] is a data collection system for monitoring large distributed systems. It is
built on top of the HDFS and MapReduce framework and inherits Hadoop’s
scalability and robustness. It transfers data to collectors and saves data to HDFS. It
contains data sins which stores raw unsorted data. A functionality called Demux is
used to add structures to create Chukwa records which eventually go to the database
for analysis. It includes a flexible toolkit for displaying, monitoring and analyzing
results to make a better use of the collected data.
T. Whirr
Whirr[24] is a set of libraries for running cloud services. It provides high-level
interaction between Hadoop and the cloud. It is based on JClouds. Clusters can be
created as per the need using Whirr. The advantage of using Whirr is that it gives
independence from Cloud vendor and makes it easier to move from them when
required. Cluster can be used and expanded as per demand and can be reduced when
not needed. It can compress data to reduce costs.

U. Impala
Impala is an open source query language for massive parallel processing developed by
Cloudera that runs natively on Hadoop. The key benefits of using Impala is that it can
perform interactive analytics in real-time, reduce data movement and duplicate
storage thereby reducing costs and providing integration with leading Business
Intelligence tools.

V. Hue
Hue stands for Hadoop User Experience[25]. It is an open source GUI for Hadoop,
developed by Cloudera. Its goal is to let user free from worries about the underlying
and backend complexity of Hadoop. It has a HDFS file browser, YARN &
MapReduce Job Browser, HBase and Zookeeper browser, Sqoop and Spark editor, a
query editor for Hive and Pig, app for Ozzie workflows, access to shell and app for
Solr searches.

4. Conclusion
Despite the fact that NoSQL and Hadoop may be better suited for large amounts of
data, it is not the recommended solution or the replacement for all problems. Only in
the case of data sets exceeding exabytes demanding large scalability and complexity
is Hadoop a suitable option. Apart from clarifying on the capabilities of each system,
this paper provides an insight on the functionalities of the various modules in the
Hadoop ecosystem.
With data growing every day, it is evident that Big Data and its implementations are
the technological solution of the future. Soon, almost all industries and organizations
around the world will adopt Big Data technology for data management.

A Systematic Approach to Big Data : Exploration of the Hadoop Framework 877

5. References

[1] Shashank Tiwari, “Professional NoSQL”, Wrox Publications, 2011 Edition
[2] Tom White, “Hadoop: The Definitive Guide”, O’Reilly Media, 2012 Edition
[3] Hadoop Distributed File System Architecture Guide, Online:

http://hadoop.apache.org/docs/stable1/hdfs_design.html
[4] Donald Miner, Adam Shook, “MapReduce Design Patterns”, O’Reilly

Media, 2012 Edition
[5] Hadoop Yet Another Resource Navigator – Hortonworks, Online: http://

hortonworks.com/hadoop/yarn/
[6] Jason Venner, “Pro Hadoop, Apress, 2009 Edition
[7] Alan Gates, “Programming Pig”, O’Reilly Media, 2011 Edition
[8] Warren Pettit, “Introduction to Pig”, Big Data University, Online:

http://bigdatauniversity.com/bdu-wp/bdu-course/introduction-to-pig/
[9] Edward Capriolo, Dean Wampler, Jason Rutherglen, “Programming Hive”,

O’Reilly Media, 2012 Edition
[10] Aaron Ritchie, “Using Hive for Data Warehousing”, Big Data University,

Online: http://bigdatauniversity.com/bdu-wp/bdu-course/using-hive-for-
data-warehousing/

[11] Henry L. Quach, “Using HBase for Real-time Access to your Big Data”, Big
Data University, Online: http://bigdatauniversity.com/bdu-wp/bdu-
course/using-hbase-for-real-time-access-to-your-big-data/

[12] Glenn Mules, Warren Pettit, “Introduction to JAQL”, Big Data University,
Online: http://bigdatauniversity.com/bdu-wp/bdu-course/414 /

[13] Apache Flume – Hortonworks, Online:
http://hortonworks.com/hadoop/flume/

[14] Apache Oozie – Hortonworks, Online:
http://hortonworks.com/hadoop/oozie/

[15] Kathleen Ting, Jarek Jarcec Cecho, “Apache Sqoop Cookbook”, O’Reilly
Media, 2013 Edition

[16] Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman, “Mahout in Action,
Manning, 2011 Edition

[17] Aaron Ritchie, Henry Quach, “Developing Distributed Applications Using
Zookeeper”, Big Data University, Online: http://bigdatauniversity.com/bdu-
wp/bdu-course/developin-distributed-applications-using-zookeeper /

[18] Jim Scott, “Avro – More Than Just A Serialization Framework”, Chicago
Hadoop Users Group, April 2012

[19] Apache Ambari – Hortonworks, Online:
http://hortonworks.com/hadoop/ambari/

[20] Apache Lucene Core, Online: http://lucene.apache.org/core/
[21] Spark – Lighting Fast Cluster Computing, Online: http://spark.incubator.

apache.org/
[22] Ebin Hewitt, “Cassandra: The Definitive Guide”, O’Reilly Media, 2010

Edition

878 Anand Loganathan et al

[23] Chukwa Processes and Data Flow, Online: http://wiki.apache.org/hadoop
/Chukwa_Processes_and_Data_Flow/

[24] Apache Whirr, “Apache Whirr Quick Start Guide”, Online : http://archive.
cloudera.com/cdh/3/whirr/quick-start-guide.html

[25] Apache Hue, Online: http://gethue.tumblr.com/

