
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 9 (2014), pp. 903-910
© International Research Publications House
http://www. irphouse.com

Performance of Lossless Compression Technique

Deepa Raj
Babasaheb Bhimrao Ambedkar University, Lucknow

Seema Gupta

Babasaheb Bhimrao Ambedkar University, Lucknow

Abstract

With the help of compression technique, size of data can be reduced
for fast processing and fast saving. Files may be any types such as
data files, documents file, images, and so on. In this paper we try to
discuss the performance of two widely used lossless compression
techniques Huffman coding and Lempel-Ziv-Welsh coding by using
encoding technique, decoding technique and compression ratio by
taking different size of data files and image files.
Keywords: Compression, Huffman Coding, Lempel-Ziv Coding

1. Introduction
Compression is the process of reducing the total number of bits needed to represent
certain information. By this, a smaller file size is generated in order to achieve a faster
transmission of electronic files and a smaller space required for its downloading. If
the compression and decompression processes induce no information loss, then the
compression scheme is lossless; otherwise, it is lossy. Compression ratio is the ratio
of total byte used for data/image file before compression and total byte used for
data/image file after compression.
Compression ratio = B0/B1
 B0 – number of bits before compression
 B1 – number of bits after compression

2. Huffman Coding
Huffman coding is a form of statistical coding. Not all characters occur with the same
frequency! Yet all characters are allocated the same amount of space Huffman coding
is a one kind of coding redundancy technique to compress a file. It changes the fixed
length bits to a variable length bits.ASCII code, a fixed-length 7 bit binary code that

904 Deepa Raj and Seema Gupta

encodes 127 characters. Since transmitting data over data links can be expensive. It
makes sense to try to minimize the number of bits sent in total. Huffman coding
technique takes important role to minimize the number of number of bits. Images,
Sound, Video etc. have large data rates that can be reduced by proper coding
redundancy techniques. A fixed length code doesn’t do a good job of reducing the
amount of data sent, since some characters in a message appear more frequently than
others, but yet require the same number of bits as a very frequent character.

2.1 Algorithm to make a Huffman tree:
Huffman algorithm for making a huffman tree for variable encoding of each symbols
used in the datafile after scanning whole file are as follows :

a.Scan the message to be encoded, and count the frequency of every character.
b. Create a single node tree for each character and its frequency and place into a

priority queue, each node has three field frquency field and two address field.
c. (c)Repeat the process Until priority queue contain only one tree.
 Remove the two nodes with the minimum frequencies from the priority

queue.
 Create a new node with frequency is sum of two removed frequency and

attach these two nodes left side and right side.
 Insert this new node into the priority queue according to the priority.

2.2 Creating a Huffman code:
After development of Huffman tree, code for each symbols used in the text or images
can be find by traversing up to the each leaf node, at the time of traversing use the
code 0 for leftside traversal and use code 1 for right side traversal, append these code
after each traversal then new code is generated for each symbols present in the leaf of
the tree.

 Suppose we have a 3 character alphabet (ABC) and we want to encode the
message ABABAC. Using a fixed length code with 3 bits per character, we need to
transmit 6*3=18 bits in total. This is wasteful since we only really need 2 bits to
encode the 3 characters ABC. So if we now use a 2 bit code (A=00, B=01, C=10),
then we only need to transmit 6*2=12 bits of data. We can reduce this even more if
we use a code based upon the frequencies of each character. In our example message,
A occurs 3 times, B twice, C once. If we generate a variable length code where A=0,
B=10, C=11 , our message above can be transmitted as the bit string: ABABAC
0 10010011= 9 bits

Table 2.2

A B C

3 2 1

Performance of Lossless Compression Technique 905

Fig: 2.2 Huffman Tree

3. Lempel-Ziv_Welsh Coding
The Lempel-Ziv-Welsh (LZW) algorithm (also known LZ-78) builds a dictionary of
frequently used groups of characters (or 8-bit binary values). Before the file is
decoded, the compression dictionary must be sent (if transmitting data) or stored (if
data is being stored). This method is good at compressing text files because text files
contain ASCII characters (which are stored as 8-bit binary values) but good for
graphics files, which may have repeating patterns of binary digits.

3.1 Lempel-Ziv_Welsh coding algorithm:
Algorithm for the compression is explained which shows how new code is generated
for the processed string and stored in the dictionary.
1. s = get input character
2. Repeat step 4 while there in no input character
3. c = get input char
4. 4 If s+c is in the dictionary

a. s = s+c

Else
a. Output the code for s
b. Add s+c to the dictionary
c. S = c

5. 5 End

3.2 Creating a LZW code:
A simple example is to use a 6 character alphabet and a 16 entry dictionary, thus the resulting
code word will have 4 bits. Let the transmitted message is:
Then the transmitter and receiver would initially add the following to its dictionary:
0000 ‘a’
0001 ‘b’
0010 ‘c’
0011–1111 empty

906 Deepa Raj and Seema Gupta

First the ‘a’ character is sent with 0000, next the ‘b’ character is sent and the transmitter
checks to see that the ‘ab’ sequence has been stored in the dictionary. As it has not, it adds
‘ab’ to the dictionary, to give:

0000 ‘a’
0001 ‘b’
0010 ‘c’
0011 ‘ab’
0100–1111 empty

 The receiver will also add this to its table (thus the transmitter and receiver will always
have the same tables). Next the transmitter reads the ‘a’ character and checks to see if the ‘ba’
sequence is in the code table. As it is not, it transmits the ‘a’ character as 0000, adds the ‘ba’
sequence to the dictionary, which will now contain:

0000 ‘a’
0001 ‘b’
0010 ‘c’
0011 ‘ab’
0100 ‘ba’
0101–1111 empty

 Next the transmitter reads the ‘b’ character and checks to see if the ‘ba’ sequences in the
table. As it is, it will transmit the code table address which Identifies it, i.e. 0111. When this
is received, the receiver detects that it is in its dictionary and it knows that the addressed
sequence is ‘ba’. Next the transmitter reads an ‘c’ and checks for the character in its
dictionary. As it is included, it transmits its address, i.e. 0010. When this is received, the
receiver checks its dictionary and locates the character ‘c’. This then continues with the
transmitter and receiver maintaining identical copies of their

0000 0001 0000 0100 0010
‘a’ ‘b’ ‘a’ ‘ba’ ‘c’
Total bits=20

 A great deal of compression occurs when sending a sequence of one character, such as a
long sequence of ‘a’. Typically, in a practical implementation of LZW, the dictionary size for
LZW starts at 4K (4096). The dictionary then stores bytes from 0 to 255 and the addresses
256 to 4095 are used for strings (which can contain two or more characters). As there are
4096 entries then it is a 12-bit coding scheme (0 to 4096 gives 0 to 212–1 different
addresses).

4. Comparative study of Lempel-Ziv-welsh/Huffman coding
 This section contains practical examples of programs which use Lempel-Ziv and/or Huffman
coding. Most compression programs use either one or both of Huffman/Lempel-Ziv
compression these techniques. As previously mentioned, both techniques are lossless. In
general, Huffman is the most efficient but requires two passes over the data, while Lempel-
Ziv-welsh uses just one pass. This feature of a single pass is obviously important when saving
to a hard disk drive or when encoding and decoding data in real-time communications.
Suppose we have a 3 character alphabet (ABC) and we want to encode the message
ABABBABCABABBA. Using a fixed length code with 3 bits per character, we need to
transmit 14*3=42 bits in total. This is wasteful since we only really need 2 bits to encode the

Performance of Lossless Compression Technique 907

3 characters ABC. So if we now use a 2 bit code (A=00, B=01, C=10), then we only need to
transmit 14*2=28 bits of data. We can reduce this even more if we use a code based upon the
frequencies of each character. In our example message, A occurs 6 times, C occurs one times,
B occurs 7 times. If we generate a variable length code where A=10, B=0, C=11, our message
above can be transmitted as the bit string:

 ABABBABCABABBA i.e 100100010011100100010 total 21 bits. Notice, that as we
process the bits each character’s code is unique; there is no ambiguity. As soon as we find a
character’s code, we start the decoding process again.
In this case compression ratio 42/21=2

LZW compression for string “ABABBABCABABBA”
Let’s start with a very simple dictionary (also referred to as a “string table”), initially
containing only 3 characters, with codes as follows:

code string

000 A
001 B
010 C
code string

000 A
001 B
010 C

Table 3.2
S C Output code String

 1
 2
 3
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB

B A
BA B 5 7 BAB
B C 2 8 BC
C A 3 9 CA
A B
AB A 4 10 ABA
A B
AB B

908 Deepa Raj and Seema Gupta

S C Output code String

 1
 2
 3
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB

ABB A 6 11

A EOF 1 ABBA

The output codes are: AB45BC46A. Instead of sending 42 bits, LZW compression
scheme sends 27 bits
Compression ratio = 42/27 = 1.56

5. Conclusions and Future scope of the Work
Huffman coding is a technique used to compress files for transmission uses statistical
coding. Huffman coding is more frequently used symbols have shorter code words. It
Works well for text and fax transmissions and its application that uses several data
structures .

Table 5: Compression Ratio Between Huffman and LZW
STRING HUFFMAN CODING LZW CODING

ABABBABCABABBA 2 1.56

ABBCCDDAAEEBBFF

1.15 1.04

ABBABBCDABEFAB 1.5 1.27

After comparing we found that Compression ratio of Huffman code is better than
LZW. Since LZW take only one pass at the time of encoding and dictionary is also
required to send at the time of transition it takes more processing time. Therefore
Huffman coding is better for compression of image as well text. When LZW and
Huffman are used to compress a binary file (all of its contents either 1 or 0), LZW
gives a better compression ratio than Huffman.

Performance of Lossless Compression Technique 909

References

[1] Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP, John Miano,
August 1999.

[2] Khalid Sayood ,“Introduction to Data Compression”, , Ed Fox (Editor), March
2000

[3] Ian H. Witten, Alistair Moffat, Timothy, C. Bel,“Managing Gigabytes:
Compressing and Indexing Documents and Images”, l , May 1999.

[4] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”, November
2001

[5] Data Compression Conference (DCC '00), March 28-30, 2000, Snowbird, Utah
[6] Sayood. Introduction to Data Compression. San Francisco, California, Morgan

Kaufmann, 1996.
[7] S. Assche, W. Philips, and I. Lemahieu. Lossless compression of pre-press

images using a novel color decorrelation technique. Proc. SPIE Very High
Resolution and Quality Imaging III, 3308:85–92, January 1998.

[8] N. Memon, X. Wu, V. Sippy, and G. Miller. An interband coding extension of
the new lossless jpeg standard. Proc. SPIE Visual Communications and Image
Processing, 3024:47–58, January 1997.

[9] Tzong Jer Chen and Keh-Shih Chuang, A Pseudo Lossless Image Compression
Method, IEEE, pp. 610-615, 2010.

[10] Jau-Ji Shen and Hsiu-Chuan Huang, An Adaptive Image Compression Method
Based on Vector Quantization, IEEE, pp. 377-381, 2010.

[11] Suresh Yerva, Smita Nair and Krishnan Kutty, Lossless Image Compression
based on Data Folding,IEEE, pp. 999-1004, 2011.

[12] Firas A. Jassim and Hind E. Qassim, Five Modulus Method for Image
Compression, SIPIJ Vol.3, No.5, pp. 19-28, 2012.

910 Deepa Raj and Seema Gupta

