
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 9 (2014), pp. 925-930
© International Research Publications House
http://www. irphouse.com

WAI-ARIA: Method To Develop Disable Friendly Websites

Fazia Fatima1, Shipra Rawal2,
Chinmay Garg3 and P N Barwal4

1 Project Associate, 2 Project Engineer, 3Technical Officer, 4Joint Director

1,2,3,4 e-Governance, Centre for Development of Advanced Computing.
C-56/1, Anusandhan Bhawan, C block, Sector 62, Noida – 201307.

Abstract

Web accessibility is a serious concern to provide universal access to a
website. Inaccessible websites can put a significant barrier to people
with disabilities. This paper focuses on identifying a technique which
improves the accessibility and interoperability of web content and
applications. The paper discusses about Web Accessibility Initiative –
Accessible Rich Internet Application (WAI-ARIA) that defines a way
to make Web content and Web applications more accessible. This
method especially deals with the dynamic content and advanced user
interface controls which are developed using HTML, JavaScript, Ajax
and other related technologies. We finally propose that using this
methodology will not only make the website globally accessible but
also provides additional benefits.
Keywords- Accessibility; Disable Friendly ; WAI-ARIA; SEO; Web
usability

1. Introduction
Accessibility can be viewed as the "ability to access" and benefit from some system or
entity. The concept often focuses on people with disabilities or special needs. It is
essential that the Web be accessible in order to provide equal access and equal
opportunity to people with diverse abilities.
 This research paper on WAI-ARIA enlightens the different roles, states and
properties. For the past few years, we are in a state of dilemma for accessible
websites, may be due to the lack of awareness.

2. Accessibility Problems
Web developers nowadays use client-side scripts to create user interface controls that
cannot be created with HTML alone. They also use client-side scripts to update

926 Fazia Fatima et al

sections of a page without requesting a completely new page from a web server. Such
techniques on websites are called rich Internet applications. Visually, emulating rich
components and making server requests in the background creates a richer experience
for users. Unfortunately, this results in accessibility problems that are particular bad
for users of assistive technologies, such as screen reader user.

 Widgets which are built in this way are rarely keyboard accessible.
 The role of the widget, what it does, is not available to assistive technology.
 States and properties of the widget are not available to assistive technology.
 Updates and discovery of the updates are not reported to assistive technology.

3. WAI-ARIA
Fortunately, the problems listed above are solved by the WAI-ARIA (Web
Accessibility Initiative -Accessible Rich Internet Application). It is a positive,
enabling technology — rather than telling developers what they cannot do, ARIA
allows developers to create rich web applications. It is a technical specification
published by the World Wide Web Consortium that defines a way to make Web
content and Web Applications (especially those which are developed with Ajax and
JavaScript) more accessible to people with disabilities. It enables accessible
navigation landmarks, JavaScript widgets, form hints and error messages, live content
updates and more.

3.1 Keyboard Navigation
Along with providing alternative text for non-text objects, being able to interact with
interface elements using the keyboard alone is one of the most basic accessibility
provisions. The tabindex attribute from HTML 4 accepts a positive value
between 0 and 32767. Elements with a value of 0 are visited in the order they appear
in the markup. ARIA extends the tabindex attribute so that it can be used on all visible
elements. ARIA also allows a negative value to be specified for elements that should
not appear in the keyboard tab order, but can be programmatically. The following
example uses a negative tabindex attribute value, so that the element can receive
programmatic focus.

<div id=”divFocus” tabindex = “-1”>
//code
</div>

In this example, the div element is not placed in the tab order, but having
a tabindex attribute value of “ -1” means that it can receive programmatic focus. The
following snippet of JavaScript selects the element defined above, and uses
the focus method to place focus on the element.

var objDiv = document.getElementById(‘divFocus’);
//focus
objDiv.focus();

WAI-ARIA: Method To Develop Disable Friendly Websites 927

4. ARIA States and Properties
ARIA states and properties allow information about the widget to be provided to
assistive technology to help the user understand how to interact with the widget. The
state identifies a unique configuration of information for an object.The various aria-
properties are shown below:

1. aria-valuemin: Stores the lowest value a range may have.
2. aria-valuemax: Stores the highest value a range may have.
3. aria-valuenow: Stores the current value in a range.
4. aria-valuetext: Stores readable text to help the user understand the context.

E.g., "42 percent".
5. aria-labelledby: Stores the id attribute of a text label containing an appropriate

prompt for this widget.

It also includes aria-autocomplete, aria-checked (state), aria-disabled (state), aria-
expanded (state),aria-has popup, aria-hidden (state), aria-invalid (state), aria-label,
aria-level, aria-multiline, aria-multiselectable, aria-orientation, aria-pressed (state),
aria-readonly, aria-required, aria-selected (state) and aria-sort.

5. WAI-ARIA Roles
This specification categorizes roles that define user interface widgets, document
structure and those that regions of the page. Roles are categorizes as follows:

5.1 Widget Roles
They act as a standalone user interface widgets or as part of larger composite widgets.
Some of these are:

1. Slider: A user input where the user selects a value from within a given range. A
slider represents the current value and range of possible values via the size of
the slider and position of the thumb.

2. Status: A container whose content is advisory information for the user but is
not important enough to justify an alert, often but not necessarily presented as a
status bar.

Widget roles also includes dialog, alert, alert dialog, gridcell, link, marquee,
menuitem, menuitemcheckbox, menuitemradio, option, progressbar, radio, scrollbar,
button, log, spinbutton, tab, tabpanel, textbox, timer, tooltip and treeitem

5.2 Document Structure Roles
The following roles describe structures that organize content in a page. Document
structures are not usually interactive. Some of these are explained as under

1. Article: A section of a page that consists of a composition that forms an
independent part of a document, page, or site.

928 Fazia Fatima et al

2. Columnheader: A cell containing header information for a column. Column
header can be used as a column header in a table or grid.

3. Row: Rows contain grid cell elements and thus serve to organize the grid.
Authors MUST ensure elements with role row are contained in, or owned by, an
element with the role grid, row group and tree grid.

Document Structure roles also include definition, directory, document, region,
rowheader, group, heading, img, list, listitem, math, note, presentation, separator and
toolbar.

5.3 Landmark Roles
The following roles are regions of the page intended as navigational landmarks. The
roles are included here in order to make them clearly part of the WAI-ARIA Role
taxonomy.

1. Banner: A region that contains mostly site-orientated content, such as the title
of the page and the logo.

2. Main: This marks the content that is directly related to or expands on the
central content of the document.

3. Navigation: A collection of navigational elements (usually links) to navigate
the document and/or related documents.

4. Search: A region that contains a collection of items and objects that, as a
whole, combines to create a search facility. This section contains a search
form to search the site.

<div role="banner">
</div>
<div id="nav" role="navigation">
<form id="form1"role="search"...>
</form>
</div>
<div id="content" role="main">
</div>

Landmark Roles also include Application, Complementary, Contentinfo and form.

6. WAI- ARIA Live Regions
Live regions allow elements in the document to be announced if there are changes,
without the user losing focus on their current activity. This means users can be
informed of updates without losing their place within the content.

6.1 The aria-live Property
The discoverability of updated content is one of the biggest obstacles for screen
reader users. ARIA provides an aria-live property that has a value indicating the
verbosity level for the region. They are off (default value, and changes will not be
announced), polite (updates are announced at the next graceful interval i.e. when the

WAI-ARIA: Method To Develop Disable Friendly Websites 929

user stops typing) and assertive (when the update is important and the user should be
informed immediately)

6.2 The aria-atomic Property
The aria-atomic property is an optional property of live regions having
values true or false (default). When the region is updated, the aria-atomic property is
used to indicate if assistive technology should present all or part of the changed region
to the user. If this property is set to true, assistive technology should present the entire
region as a whole
In the following example, if a change is made anywhere in the div element, the whole
content is announced to the user.
<div aria-atomic="true" aria-live="polite">
<h4>Currently Working On<h4>
<p>Web Accessibility Initiative – Accessible Rich Internet Application (WAI-ARIA)
</p>
</div>

6.3 The aria-busy Property
The aria-busy property should be used if multiple parts of a live region need to be
loaded before changes are announced to the user, the aria-busy property can be set
to true until the final part is loaded, and then set to false when the updates are
complete. This property prevents assistive technologies announcing changes before
the updates are complete.

<ol aria-busy="true" aria-live="polite">

6.4 The aria-relevant Property
The aria-relevant property is an optional property of live regions that indicates what
changes are considered relevant within a region. It indicates the type of update that
should be announced in a region. They are Additions (announces when the elements
are added to the DOM within the region), Removals (when the elements are
removed), Text (when the text is added or removed) and All: (All of the above). In the
absence of an explicit aria-relevant property, the default is to assume there are text
changes and additions (aria-relevant="text additions").

7. Conclusion
There are no negative side effects from using ARIA. Often, script-based
customization for assistive technologies in the workplace tackles exactly those custom
controls that WAI-ARIA could make accessible. Better support for WAI-ARIA may
save much time and cost. This, however, presupposes that in creating web or intranet
applications, developers use WAI-ARIA consistently and according to best practices.
Some of the additional benefits of web accessibility are listed below:

930 Fazia Fatima et al

1. Search engine optimization: SEO is something companies don’t usually
hesitate to spend money on. And yet many accessibility guidelines are the
same as SEO techniques, for example valid HTML, clear link names, using
text rather than images of text, descriptive ‘title’ tags, providing text
equivalents for multimedia, creating a site map, etc. This means that
incorporating accessibility will at the same time help to improve websites’
search engines ranking;

2. Increased usability: In general, accessibility increases usability of a website,
and in effect improves quality of user experience. As accessible websites are
easier to find, access and use, they maximize the number of possible visitors.
Some accessibility guidelines are similar to the usability ones, such as
promoting clear and consistent design and navigation, dividing blocks of
information into logical sections, etc.

3. Reduced site development and maintenance time: Although incorporating
accessibility can increase site development time initially, in long term it
reduces time spent on site improvements and maintenance. Using style sheets
and coding to standards reduces effort needed to change presentation across a
site.

4. Reputation: Last but not least, a company’s efforts towards making their
website accessible can have a positive impact on company’s reputation, as it
creates an image of ethical and socially responsible organization.

Acknowledgements:
We express our deep thanks to Mr. B.K. Murthy, Executive Director; CDAC Noida
(India) with the help of his vast experience, efforts, valuable suggestion, support and
motivation helped us to great extent for the design and development of this utility.

References

[1] http://www.w3.org/TR/wai-aria/
[2] http://msdn.microsoft.com/en-us/magazine/ff743762.aspx

