
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 9 (2014), pp. 931-936
© International Research Publications House
http://www. irphouse.com

Impact of Event Driven Programing Paradigm
on Real World

HarshitJuneja, Himanshu Yadav, Rajat Paruthi, Vikram Gupta

Student1, Student2, Student3, Student4
ITM University, Gurgaon

Abstract

The real world works according to events. People make unique choices
according to the conditions they are put in. In this pap er, an event
driven approach is talked about and the impacts it has had on various
fields with its evolution. Three of which have been discussed in the
paper. At the lower level, basic sequences are coded in elementary
software objects called function blocks which prove their functionality
when called or used. At the upper level, the execution of such blocks is
carried out according to the desired sequences forced by a controller.
The interaction of the user with the computer used to be limited to the
sequential file, this all changed with the arrival of event driven
programs the user can now engage the computer while it is running ot
her tasks.
Keywords – event driven approach; function blocks; interaction etc.

1. Introduction
Event driven programming, as the name suggests is a programming paradigm in
which the primary activity is reacting to the signals. These signals or rather inputs can
be received from any source. They can be timers, human responses such as a basic left
mouse click or can be made during the computational process in response to other
signals.

Modern graphical user interfaces like the desktop of our computer have been possible
because of event driven paradigm, earlier it would just have been a few lines of code
of instructions followed by the computer in a linear (procedural) fashion , thus leaving
no scope for user interaction but with the advent of event driven programs there are
various events (programs) for the user to choose from, giving the user a freedom to do
what he/she wants and that alone. These programs have allowed us to truly push the

932 HarshitJuneja et al

boundaries of programming by making it more interactive and responsive, the
advantage of event driven paradigm is that it can be integrated into the existing
paradigms to make a program much better and accessible.

Although it may appear to be similar to concurrency control, event driven
programming is simply a tool that allows t he flow of control of program to change
according to events that are external to the program itself.

2. Background and Related Work
The concept behind the development of Event Driven programming arose from the
need to interact with the program while it is being executed which was not possible
when batch processing was employed which essentially made a computer an assembly
line where the sequential file is brought in and processed and finally the finished
result or an error is generated. It started out in 1970’s that Larry L. Constantine, a
business application programmer developed structured systems. Today he is
considered the human father of structured systems and IBM's Systems Research
Institute the corporate father. Structured system uses dataflow diagrams (DFD’s) to
show the logical structure of a computer system. A dataflow diagram shows the
logical functions that a system must perform, but it doesn't say anything about the
design of the program that will perform those functions.

In order to write an event driven program the first thing we need to do is to write a
series of sub-routines or methods called event handler routines. For e.g. - a single
touch on the screen of a modern mobile phone triggers a routine that may open an
app., save data to the memory space or delete something. Many modern
programming environments provide the programmer with event templates that he/she
needs to program in the events.

The second step is to bind the correct functions to the event handlers so that the
correct/intended e vent takes place. Graphical editors combine the first two steps:
double click the button you wish to program and the editor creates an empty event
handler and opens a text window to let you type in the program.

The third step is to write a main loop which is basically a function that repeatedly
checks if any event has been selected by the user and call the correct event handler to
process that event. The continuous checking makes sure that no event is missed.

Impact of Event Driven Programing Paradigm on Real World 933

An event driven application is a computer program whose purpose is to respond
accordingly to the actions generated by the system, or the user. In a computing
context, we can identify any event that signifies its occurrence to the system
hardware, or the software. Both system-generated events like loading of any program
etc. and user-generated actions like mouse clicks etc. are included in events.

In Event-driven programming, the event-processing logic gets separated from the rest
of the program’s code. Batch processing stands in opposition of the event-driven
approach. As event driven programming is a programing paradigm, therefore we can
create event-driven apps in any language we want. The responsiveness, flexibility and
the throughput can be improved with the help of event-driven processing depending
upon the specific application.

Peter Niblett and Dr. Opher Etzion in their book Event-Driven Processing in Action,
have described some purposes of event- driven applications which includes:

 All the event are around the application. The application will analyse and reacts

to the events to which the sensors detects and reports.
 According to the situation (i.e. either good or bad), the application needs to

identify and react to this. An event driven approach lets the application to
respond in more timely fashion and in a more controlled way as the changes are
more efficiently monitored as they happen whereas in a batch process, the
monitoring process is done intermittently.

 The application might have large amount of data that might be needed as output
for some application or to some human user. An event-driven approach can be
used to distribute the analysis of taking the input data as events across multiple
computing nodes.

With event-driven approach, an existing application can be extended in a pliable, non-
invasive manner. To add some extra function, the original application can be
instrumented with the help of adding some event procedures to it in spite of changing
the original application and this functionality can be implemented by processing the
events generated.

3. Successful Implementation of Event Driven Methodology
3.1 Industrial Automation Systems Based On PLCS
Automation industry of today has the capability to implement applications involving
widely distributed devices and a high reuse of software components thus generating a
huge good quality production. A proper organisation of the inputs and outputs of
function blocks and a supervisory control is very important for assembly lines in the
automation industry to meet new challenges in this field. As a result, the application
of event driven programing paradigm is of much more importance in industrial
automation than it is in software engineering as industrial control system needs to be
equipped with real time operating systems that guarantees real time constraints.

934 HarshitJuneja et al

3.2 Business Integration Using Event Driven Programming
The basic requirement of a business integration can also be fulfilled by an event
driven systems which include event identification, event co-ordination, event driven
updating of stateful objects and also event emission. In a business integration
environment which basically includes business process automation, activity
monitoring, marketing and even service mediation, transmission of events takes place
typically via network channels.

3.3 Power Management Using Event Driven Programming
With the advancement in technology and graphical and computational processing of
mobile consumer electronics such as smartphones and tablet PC’s replacing
conventional PC’S and other handheld devices. However the higher clock frequencies
and ever increasing number of cores has increased the workload on the already
strained battery life. Event driven programming along with processor hotplugging can
be used to program a power management scheme to guarantee high responsiveness
while at the same time optimising battery life. Since typical mobile systems place the
framework layer on the OS to serve applications in an event driven manner. In this
scheme we use an interactive event triggered b y the user for example a screen touch
to be used to adequate level of processor performance providing the highest clock
frequency in response to an interactive event while minimising battery loss by
lowering clock frequency when the device is in an idle state. This system assisted
event driven power management by the framework enhances the user’s experience
and energy efficiency of mobile consumer devices without compromising on
performance.

4. Challenges
Suppose we need to retrieve some data using a GET request, and handling a HTTP
error. A simple state machine in generic event-driven framework will be implemented
and the graph will be as shown:

Impact of Event Driven Programing Paradigm on Real World 935

Here, all states (excluding initial one) will correspond to a call-back. The framework
will determine the transitions. The current state also need to be kept in track
accurately in order to avoid starting more than one request at same time.

Now if we make a simple change to the program. If we need to make the requests try
ag ain but only once. This time, some extra nodes are to be added for non-fatal error
condition as more complications will be there this time in state machine.

In the event-driven code, if we encounter with an error, we have to keep track of that.
Also, to perform right action, and keep it up to date, we need to check this flag at each
call-back. Since, for multiple codes, same call-back is reused, so the code will not be
shaped like the state machine. For testing, every possible path needs to be traced.

Suppose if simultaneous requests are to be allowed. This time, the code gets pretty
fast. We here, also see many devastating changes in state graph by putting some small
changes in the requirements. Practically, it is impossible to modify the code, a s many
times, the state graph is kept implicit making it impossible to test the code reliably.

5. Conclusions
This paper covers all the important aspects of event driven programming paradigm
and its implementation which proves its closeness to the real world. Thus making it a
lucrative concept to integrate with the existing management schemes.

References
[1] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6490268&quer

yText%3DAn+Event-Driven+Power+Management+Scheme
[2] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6686246&quer

yText%3DOn+Event-Driven+Business+Integration
[3] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6571621&quer

yText%3DConsidering+Context+Events+in+Event-Based

936 HarshitJuneja et al

