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Abstract 

Discrete tomography (DT) named total variation regularized discrete algebraic 

reconstruction technique (TVR-DART) with automated gray value estimation. 

This algorithm is more robust and automated than the original DART 

algorithm, and is aimed at imaging of objects consisting of only a few 

different material compositions, each corresponding to a different gray value 

in the reconstruction. 

 

INTRODUCTION 

TOMOGRAPHY 

Tomography is an important technique for noninvasive imaging with applications in 

medicine, industry, and science. It is applicable in scenarios where series of projection 

images of an object are available, acquired for a range of angles. A reconstruction of 

the object is subsequently computed from the projection images by a reconstruction 

algorithm. A range of reconstruction algorithms are available, which differ in 

reconstruction accuracy, requirements on the projection geometry, computational 

load, etc. Classical Filtered Back Projection (FBP) techniques are still commonly 

used. 

Algebraic reconstruction methods, that are based on modelling the reconstruction 

problem as a large system of linear equations which is solved by iterative methods, 

are gradually becoming more common in tomography practice. Such algorithms can 

potentially yield more accurate reconstructions in some cases, at the expense of 

increased computation time. In many applications of tomography, it makes sense to 

exploit available prior knowledge of the unknown object. Incorporation of this 

knowledge in the reconstruction algorithm can potentially result in a reduction of the 
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required number of projections, increased accuracy of the reconstruction, or an 

improved ability to deal with noisy projection data. The problem of reconstructing 

images, or more general signals, from a small number of weighted sums of their 

values has recently attracted considerable interest in the field of Compressed Sensing. 

In particular, it was proved that if the image is sparse, it can be reconstructed 

accurately from a small number of measurements with very high probability, as long 

as the set of measurements satisfies certain randomization properties. In many images 

of objects that occur in practice, the image itself is not sparse, yet the boundary of the 

object is relatively small compared to the total number of pixels. In such cases, 

sparsity of the gradient image can be exploited by Total Variation Minimization. We 

consider a different type of prior knowledge, where it is assumed that the unknown 

object consists of a small number (i.e., 2-5) of different materials, each corresponding 

to a characteristic, approximately constant grey level in the reconstruction. Such prior 

knowledge is available in a wide range of tomography applications: when performing 

X-ray tomography of industrial objects, the compositions in these objects (e.g., 

aluminum, plastic, air) are often known in advance.  

If a bone is scanned (in-vitro) in a micro-CT scanner, one can sometimes assume that 

the bone has a single constant density. As a third example we mention the 

reconstruction of homogeneous nanoparticles by electron tomography. The problem 

of reconstructing images containing a small set of grey levels from their projections 

has been studied in the fields of Discrete Tomography and Geometric Tomography. 

Geometric tomography deals with the reconstruction of geometric objects from data, 

its projections, or both . Images of such objects can be considered as binary images, 

where the first grey level (i.e., black) corresponds to the exterior of the object and the 

second grey level (white) corresponds to the interior. Much of the work on geometric 

tomography is concerned with rather specific objects, such as convex or starshaped 

objects. 

According to the field of discrete tomography deals with the reconstruction of images 

from a small number of projections, where the set of pixel values is known to have 

only a few discrete values. The literature on discrete tomography contains some 

conflicting definitions of the field. Originally, the main focus was on the 

reconstruction of (typically binary) images for which the domain was a discrete set, 

inspired by applications in crystallography. The focus of the algorithm described in 

this paper is somewhat different from both geometric and discrete tomography. 

Firstly, our approach deals not only with binary images, but also with images that 

contain three or more grey levels. There is no fixed upper bound on the number of 

grey levels. Yet, the proposed techniques will only be effective if the number of grey 

levels is small (i.e., 5 or fewer). Compared to discrete tomography, which focuses on 

reconstruction from a small number of projections (i.e., 4 or fewer), our approach is 

more general. If tens or even hundreds of projection images are available, prior 

knowledge of the grey levels in the reconstruction can still be used effectively to 

improve the quality of the reconstruction, in particular when the projection data are 

noisy. 
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A variety of reconstruction algorithms have been proposed for discrete tomography 

problems. In a primal-dual subgradient algorithm is presented for reconstructing 

binary images from a small number of projections. This algorithm is applied to a 

suitable decomposition of the objective functional, yielding provable convergence to a 

binary solution. In [5], a similar reconstruction problem is modeled as a series of 

network flow problems in graphs, that are solved iteratively. Both  consider 

reconstruction problems that may involve more than two grey levels, employing 

statistical models based on Gibbs priors for their solution.  

For all these approaches, the required computation time becomes a major obstacles 

when dealing with image sizes used in practice. Recently, a new reconstruction 

algorithm for discrete tomography, called DART (Discrete Algebraic Reconstruction 

Technique) was proposed. DART alternates iteratively between “continuous” update 

steps, where the reconstruction is considered as an array of real-valued unknowns, and 

discretization steps, which incorporate the prior knowledge of the grey levels in the 

image. Application of this algorithm to experimental electron tomography data has 

already resulted in several important new insights in the properties of nanomaterials, 

as alternative techniques are not available at this scale.  

However, a full description of the algorithmic details has been lacking thus far. Also, 

DART is a heuristic algorithm without guaranteed convergence properties which calls 

for a thorough experimental validation of algorithm properties. we provide a detailed 

presentation of the DART algorithm and validate this technique by extensive 

experiments based on simulated projection data, as well as real X-ray _CT data. We 

investigate its ability to reconstruct images from a small number of projections and 

from projections acquired along a small angular range, comparing DART with several 

alternative algorithms. We also present experimental results on the robustness of 

DART with respect to noise in the projection data and errors in the discrete grey 

levels used for reconstruction. 

Mathematical notation is introduced to describe the tomographic reconstruction 

problem and the reconstruction problem for discrete tomography is stated formally. 

The Simultaneous Algebraic Reconstruction Technique (SART) algorithm for 

continuous tomography is briefly reviewed, as it is used as a subroutine in our 

implementation of DART. The DART algorithm is described.  

We discuss how this algorithm can be implemented efficiently. The set of phantom 

images used in our simulation experiments and describes the experimental setup. 

Reports on extensive experiments, comparing DART with three alternative 

reconstruction algorithms, investigating its robustness with respect to noise and errors 

in the grey level assumptions, and desc 

 

GRAY VALUE ESTIMATION 

A grayscale or greyscale digital image is an image in which the value of each pixel is 

a single sample, that is, it carries only intensity information. Images of this sort, also 

https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Sample_(signal)
https://en.wikipedia.org/wiki/Luminous_intensity
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known as black-and-white, are composed exclusively of shades of gray, varying from 

black at the weakest intensity to white at the strongest. 

Grayscale images are distinct from one-bit bi-tonal black-and-white images, which in 

the context of computer imaging are images with only the two colors, black, and 

white (also called bilevel or binary images). Grayscale images have many shades of 

gray in between. 

Grayscale images are often the result of measuring the intensity of light at each pixel 

in a single band of the electromagnetic spectrum (e.g.infrared, visible 

light, ultraviolet, etc.), and in such cases they are monochromatic proper when only a 

given frequency is captured. But also they can be synthesized from a full color image; 

see the section about converting to grayscale. ribing experimental convergence 

properties. Section VII concludes this paper. 

 

EXISTING SYSTEM 

Existing algorithms under noisy conditions from a small number of projection images 

and/or from a small angular range. 

 

PROPOSED SYSTEM 

The new algorithm requires less effort on parameter tuning compared with the 

original DART algorithm. With TVR-DART, we aim to provide the tomography 

society with a easy-to-use and robust algorithm for DT. Electron tomography data sets 

show that TVR-DART is capable of providing more accurate reconstruction 

 

IMAGE RECONSTRUCTION  

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D 

images in certain imaging techniques. For example, in computed tomography an 

image must be reconstructed from projections of an object. Here, iterative 

reconstruction techniques are usually a better, but computationally more expensive 

alternative to the common filtered back projection (FBP) method, which directly 

calculates the image in a single reconstruction step. In recent research works, 

scientists have shown that extremely fast computations and massive parallelism is 

possible for iterative reconstruction, which makes iterative reconstruction practical for 

commercialization. 

The reconstruction of an image from the acquired data is an inverse problem. Often, it 

is not possible to exactly solve the inverse problem directly. In this case, a direct 

algorithm has to approximate the solution, which might cause visible reconstruction 

artifacts in the image. Iterative algorithms approach the correct solution using 

multiple iteration steps, which allows to obtain a better reconstruction at the cost of a 

higher computation time. 

https://en.wikipedia.org/wiki/Black-and-white
https://en.wikipedia.org/wiki/Grey
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Black
https://en.wikipedia.org/wiki/White
https://en.wikipedia.org/wiki/Binary_image
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Algorithms
https://en.wikipedia.org/wiki/Digital_imaging
https://en.wikipedia.org/wiki/Computed_tomography
https://en.wikipedia.org/wiki/Filtered_back_projection
https://en.wikipedia.org/wiki/Inverse_problem
https://en.wikipedia.org/wiki/Digital_artifact
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In computed tomography, this approach was the one first used by Hounsfield. There 

are a large variety of algorithms, but each starts with an assumed image, computes 

projections from the image, compares the original projection data and updates the 

image based upon the difference between the calculated and the actual projections. 

There are typically five components to iterative image reconstruction algorithms, e.g.  

1. An object model that expresses the unknown continuous-space function that is 

to be reconstructed in terms of a finite series with unknown coefficients that 

must be estimated from the data. 

2. A system model that relates the unknown object to the "ideal" measurements 

that would be recorded in the absence of measurement noise. Often this is a 

linear model of the form, where represents the noise. 

3. A statistical model that describes how the noisy measurements vary around 

their ideal values. Often Gaussian noise or Poisson statistics are assumed. 

Because Poisson statistics are closer to reality, it is more widely used. 

4. A cost function that is to be minimized to estimate the image coefficient 

vector. Often this cost function includes some form of regularization. 

Sometimes the regularization is based on Markov random fields. 

5. An algorithm, usually iterative, for minimizing the cost function, including 

some initial estimate of the image and some stopping criterion for terminating 

the iterations. 

 

Advantages 

The advantages of the iterative approach include improved insensitivity to noise and 

capability of reconstructing an optimal image in the case of incomplete data. The 

method has been applied in emission tomography modalities like SPECT and PET, 

where there is significant attenuation along ray paths and noise statistics are relatively 

poor. 

Statistical, likelihood-based approaches: Statistical, likelihood-based 

iterative expectation-maximization algorithms [4] are now the preferred method of 

reconstruction. Such algorithms compute estimates of the likely distribution of 

annihilation events that led to the measured data, based on statistical principle, often 

providing better noise profiles and resistance to the streak artifacts common with 

FBP. Since the density of radioactive tracer is a function in a function space, therefore 

of extremely high-dimensions, methods which regularize the maximum-likelihood 

solution turning it towards penalized or maximum a-posteriori methods can have 

significant advantages for low counts. Examples such as Ulf Grenander's Sieve 

estimator or Bayes penalty methods  or via I.J. Good's roughness method may yield 

superior performance to expectation-maximization-based methods which involve a 

Poisson likelihood function only. 

https://en.wikipedia.org/wiki/Computed_tomography
https://en.wikipedia.org/wiki/Godfrey_Hounsfield
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Gaussian_noise
https://en.wikipedia.org/wiki/Poisson_statistics
https://en.wikipedia.org/wiki/Poisson_statistics
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Markov_random_fields
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Signal_noise
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/SPECT
https://en.wikipedia.org/wiki/Positron_emission_tomography
https://en.wikipedia.org/w/index.php?title=Noise_statistics&action=edit&redlink=1
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Ulf_Grenander
https://en.wikipedia.org/wiki/Sieve_estimator
https://en.wikipedia.org/wiki/Sieve_estimator
https://en.wikipedia.org/wiki/I.J._Good
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As another example, it is considered superior when one does not have a large set of 

projections available, when the projections are not distributed uniformly in angle, or 

when the projections are sparse or missing at certain orientations. These scenarios 

may occur in intraoperative CT, in cardiac CT, or when metal artifacts require the 

exclusion of some portions of the projection data. 

In Magnetic Resonance Imaging it can be used to reconstruct images from data 

acquired with multiple receive coils and with sampling patterns different from the 

conventional Cartesian grid and allows the use of improved regularization techniques 

(e.g. total variation) or an extended modeling of physical processes to improve the 

reconstruction. For example, with iterative algorithms it is possible to reconstruct 

images from data acquired in a very short time as required for Real-time MRI. 

In Cryo Electron Tomography, where the limited number of projections are acquired 

due to the hardware limitations and to avoid the biological specimen damage, it can 

be used along with compressive sensing techniques or regularization functions 

(e.g. Huber function) to improve the reconstruction for better interpretation 

 

Image Reconstruction Techniques 

Image reconstruction in CT is a mathematical process that generates tomographic 

images from X-ray projection data acquired at many different angles around the 

patient. Image reconstruction has fundamental impacts on image quality and therefore 

on radiation dose. For a given radiation dose it is desirable to reconstruct images with 

the lowest possible noise without sacrificing image accuracy and spatial resolution. 

Reconstructions that improve image quality can be translated into a reduction of 

radiation dose because images of the same quality can be reconstructed at lower dose. 

Two major categories of reconstruction methods exist, analytical reconstruction and 

Iterative Reconstruction (IR). Let’s focus on the analytical reconstruction methods at 

first. There are many types of analytical reconstruction methods. The most commonly 

used analytical reconstruction methods on commercial CT scanners are all in the form 

of Filtered Back Projection (FBP), which uses a 1D filter on the projection data before 

back projecting (2D or 3D) the data onto the image space. The popularity of FBP-type 

of method is mainly because of its computational efficiency and numerical stability. 

Various FBP-type of analytical reconstruction methods were developed for different 

generations of CT data-acquisition geometries, from 2D parallel- and fan-beam CT in 

the 1970s and 1980s to helical and multi-slice CT with narrow detector coverage in 

late 1990s and early 2000s, and to multi-slice CT with a wide detector coverage (up to 

320 detector rows and 16 cm width). 3D weighted FBP methods are generally adopted 

on scanners with more than 16 detector rows. For a general introduction of the 

fundamental principles of CT image reconstruction, please refer to Chapter 3 in Kak 

and Slaney’s book. An introduction to reconstruction methods in helical and multi-

slice CT can be found in Hsieh’s book. A review of analytical CT image 

reconstruction methods used on clinical CT scanners. 

https://en.wikipedia.org/wiki/Intraoperative
https://en.wikipedia.org/wiki/Cardiac
https://en.wikipedia.org/wiki/Artifact_(observational)
https://en.wikipedia.org/wiki/Magnetic_Resonance_Imaging
https://en.wikipedia.org/wiki/Total_variation
https://en.wikipedia.org/wiki/Real-time_MRI
https://en.wikipedia.org/wiki/Cryo-electron_tomography
https://en.wikipedia.org/wiki/Compressive_sensing
https://en.wikipedia.org/wiki/Huber_loss
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Users of clinical CT scanners usually have very limited control over the inner 

workings of the reconstruction method and are confined principally to adjusting 

various parameters that potentially affect image quality. The reconstruction kernel, 

also referred to as “filter” or “algorithm” by some CT vendors, is one of the most 

important parameters that affect the image quality. Generally speaking, there is a 

tradeoff between spatial resolution and noise for each kernel. A smoother kernel 

generates images with lower noise but with reduced spatial resolution. A sharper 

kernel generates images with higher spatial resolution, but increases the image noise. 

The selection of reconstruction kernel should be based on specific clinical 

applications. For example, smooth kernels are usually used in brain exams or liver 

tumor assessment to reduce image noise and enhance low contrast detectability, 

whereas sharper kernels are usually used in exams to assess bony structures due to the 

clinical requirement of better spatial resolution. 

Another important reconstruction parameter is slice thickness, which controls the 

spatial resolution in the longitudinal direction, influencing the tradeoffs among 

resolution, noise, and radiation dose. It is the responsibility of CT users to select the 

most appropriate reconstruction kernel and slice thickness for each clinical application 

so that the radiation dose can be minimized consistent with the image quality needed 

for the examination. 

In addition to the conventional reconstruction kernels applied during image 

reconstruction, many noise reduction techniques, operating on image or projection 

data, are also available on commercial scanners or as third-party products. Many of 

these methods involve non-linear de-noising filters, some of which have been 

combined into the reconstruction kernels for the users’ convenience. In some 

applications these methods perform quite well to reduce image noise while 

maintaining high-contrast resolution. If applied too aggressively, however, they tend 

to change the noise texture and sacrifice the low-contrast detectability in the image. 

Therefore, careful evaluation of these filters should be performed for each diagnostic 

task before they are deployed into wide-scale clinical usage. 

Scanning techniques and image reconstructions in ECG-gated cardiac CT have a 

unique impact on image quality and radiation dose. Half-scan (or short-scan) 

reconstruction is typically used to obtain better temporal resolution. For the widely 

employed retrospective ECG-gated helical scan mode, the helical pitch is very low 

(~0.2 to 0.3) in order to avoid anatomical discontinuities between contiguous heart 

cycles. A significant dose reduction technique in helical cardiac scanning is ECG 

tube-current pulsing, which involves modulating the tube current down to 4% to 20% 

of the full tube current for phases that are of minimal interest. Prospective ECG-

triggered sequential (or step-and-shoot) scans are a more dose-efficient scanning 

mode for cardiac CT, especially for single-phase studies. An overview of scanning 

and reconstruction techniques in cardiac CT. 

Different from analytical reconstruction methods, IR reconstructs images by 

iteratively optimizing an objective function, which typically consists of a data fidelity 

term and an edge-preserving regularization term. The optimization process in IR 



8   M. Anantha Lakshmi, Dr. Prof. P. Kailasapathi, Dr. A. Sanjeevi Kumar 

involves iterations of forward projection and backprojection between image space and 

projection space. With the advances in computing technology, IR has become a very 

popular choice in routine CT practice because it has many advantages compared with 

conventional FBP techniques. Important physical factors including focal spot and 

detector geometry, photon statistics, X-ray beam spectrum, and scattering can be more 

accurately incorporated into IR, yielding lower image noise and higher spatial 

resolution compared with FBP. In addition, IR can reduce image artifacts such as 

beam hardening, windmill, and metal artifacts. 

Due to the intrinsic difference in data handling between FBP and iterative 

reconstruction, images from IR may have a different appearance (e.g., noise texture) 

from those using FBP reconstruction. More importantly, the spatial resolution in a 

local region of IR-reconstructed images is highly dependent on the contrast and noise 

of the surrounding structures due to the non-linear regularization term and other 

factors during the optimization process . Measurements on different commercial IR 

methods have demonstrated this contrast- and noise-dependency of spatial resolution . 

Because of this dependency, the amount of potential radiation dose reduction 

allowable by IR is dependent on the diagnostic task since the contrast of the subject 

and the noise of the exam vary substantially in clinical exams . For low-contrast 

detection tasks, several phantom and human observer studies on multiple commercial 

IR methods demonstrated that only marginal or a small amount of radiation dose 

reduction can be allowed. Careful clinical evaluation and reconstruction parameter 

optimization are required before IR can be used in routine practice. Task-based image 

quality evaluation using model observers have been actively investigated so that 

image quality and dose reduction can be quantified objectively in an efficient manner. 

 

METHOD 

(1) Algebraic Reconstruction Algorithms 

An entirely different approach for tomographic imaging consists of assuming that the 

cross section consists of an array of unknowns, and then setting up algebraic 

equations for the unknowns in terms of the measured projection data. Although 

conceptually this approach is much simpler than the transform-based methods, for 

medical applications it lacks the accuracy and the speed of implementation. However, 

there are situations where it is not possible to measure a large number of projections, 

or the projections are not uniformly distributed over 180 or 360”) both these 

conditions being necessary requirements for the transform based techniques to 

produce results with the accuracy desired in medical imaging.  

An example of such a situation is earth resources imaging using cross-borehole 

measurements. Problems of this type are sometimes more amenable to solution by 

algebraic techniques. Algebraic techniques are also useful when the energy 

propagation paths between the source and receiver positions are subject to ray 

bending on account of refraction, or when the energy propagation undergoes 

attenuation along ray paths as in emission CT. Unfortunately, many imaging problems 

where refraction is encountered also suffer from diffraction effects. As will be 
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obvious from the discussion to follow, in algebraic methods it is essential to know ray 

paths that connect the corresponding transmitter and receiver positions. When 

refraction and diffraction effects are substantial (medium in homogeneities exceed 

10% of the average background value and the correlation length of these in 

homogeneities is comparable to a wavelength), it becomes impossible to predict these 

ray paths. If algebraic techniques are applied under these conditions, we often obtain 

meaningless results. 

If the refraction and diffraction effects are small (medium in homogeneities are less 

than 2 to 3% of the average background value and the correlation width of these in 

homogeneities is much greater than a wavelength), in some cases it is possible to 

combine algebraic techniques with digital ray tracing techniques and devise iterative 

procedures in which we first construct an image ignoring refraction, then trace rays 

connecting the corresponding transmitter and receiver locations through this 

distribution, and finally use these rays to construct a more accurate set of algebraic 

equations. Experimental verification of this iterative procedure for weakly refracting 

objects has been obtained. Space limitations prevent us from discussing here the 

combined ray tracing and algebraic reconstruction algorithms. Our aim in this section 

is to merely introduce the reader to the algebraic approach for image reconstruction. 

First we will show how we may construct a set of linear equations whose unknowns 

are elements of the object cross section. The Kaczmarz method for solving these 

equations will then be presented. This will be followed by the various approximations 

that are used in this method to speed up its computer implementation. 

 

Algebraic reconstruction technique 

The algebraic reconstruction technique (ART) is a class of iterative algorithms 

used in computed tomography. These reconstruct an image from a series of angular 

projections (a sinogram). Gordon, Bender and  Herman first showed its use in image 

reconstruction; whereas the method is known as Kaczmarz method in numerical linear 

algebra. 

ART can be considered as an iterative solver of a system of linear equations  The 

values of the pixels are considered as variables collected in a vector and the image 

process is described by a matrix .The measured angular projections are collected in a 

vector . Given a real or complex matrix and a real or complex vector  respectively, the 

method computes an approximation of the solution of the linear systems of equations 

as in the following formula, where  is the i-th row of the matrix is the i-th component 

of the vector, and  is a relaxation parameter. The above formulae gives a simple 

iteration routine. An advantage of ART over other reconstruction methods (such 

as filtered backprojection) is that it is relatively easy to incorporate prior knowledge 

into the reconstruction process. ART falls into the category of Iterative 

reconstruction techniques. 

 

 

https://en.wikipedia.org/wiki/Computed_tomography
https://en.wikipedia.org/wiki/Radon_transform
https://en.wikipedia.org/wiki/Richard_Gordon_(theoretical_biologist)
https://en.wikipedia.org/wiki/Gabor_Herman
https://en.wikipedia.org/wiki/Kaczmarz_method
https://en.wikipedia.org/wiki/Filtered_backprojection
https://en.wikipedia.org/wiki/Iterative_reconstruction
https://en.wikipedia.org/wiki/Iterative_reconstruction
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TVR-DART FORMULATION 

The key assumption in TVR-DART is that the image we seek consists of n grayscale 

levels that are separated by a narrow, but smooth, transition layer. Thus, we introduce 

a (parametrized) segmentation operator T : X × Θ → X that acts as a kind of 

segmentation map. It is here given as 

      T (f, θ)(x) = nX−1 Σ i=1 (ρi − ρi−1)uki (f(x) – τi)      for x ∈ Ω and θ ∈ Θ. 

The parameter space Θ := (R × R × R) n defines the transition characteristics of the n 

layers (the background ρ0 is often set to 0). Concretely, θ = (θ1, . . . , θn) ∈ Θ with θi 

:= (ρi , τi , Ki) where ρi is the gray-scale level of the i:th level, τi is the mid-point 

gray-scale value, ki := Ki/(ρi − ρi−1) is the sharpness of the smooth gray-scale 

transition, and u: R → [0, 1] is the logistic function that models the transition itself 

 uk(s) := 1/ 1 + e−2ks for s ∈ R. 

The TVR-DART algorithm for solving (1) is now defined as a method that yields a 

minimizer to 

                       min  f∈X, θ∈Θ [ L [A ◦ T ](f, θ), g) + λ[S ◦ T ](f, θ) ] 

In the above, L: Y × Y → R+ is an appropriate data-fit term and S : X → R+ is the 

regularization. The variant considered in [17] uses a data-fit term L(·, g) = k · − gk 2 

2 and a regularizing functional TVε = [Hε ◦∇], where Hε is the Huber norm and ∇ is 

the spatial gradient operator. The Huber norm is a smooth surrogate functional for the 

L 1 -norm, and Hε ◦∇ is thus a smoothed version of TV. Hence, (6) becomes 

                  min f∈X,θ∈Θ [ [A ◦ T ](f, θ) − g 2 2 + λ[Hε ◦∇ ◦ T ](f, θ) ] 

Gradient based methods can be used to solve (7) since its objective functional is 

smooth. In [17] one such solution method was presented, based on an alternating 

optimization over f and θ. We take a similar approach here, and to this end define the 

two operator T θ : X → X, defined by T θ(f) = T (f, θ), and T f : Θ → X, defined T f 

(θ) = T (f, θ), where θ and f are seen as fix parameters, respectively. In the current 

implementation we view the sharpness parameter as fixed, but optimize over gray-

scale value and mid-point. 

 

REQUIREMENTS 

The complete algorithm is implemented in Matlab using the open source ASTRA 

Tomography Toolbox 
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RESULTS AND DISCUSSION 

 

       

                 Phantom            x  Filtered Back projection RME: 1:96, and SSIM: 0:111., 

FBP reconstructions from the data with Poisson noise 

 

 

Using TVR-DART under the same noise level and number of projection images as in 

Reconstruction. Convergence of the objective function through iterations. 

Convergence of gray value estimation as sum of absolute errors of the estimated gray 

values through iterations.   

 

CONCLUSIONS 

The algorithm is aimed at tomographic reconstruction of objects consisting of a few 

different material compositions, each approximately corresponding to a constant gray 

value in the reconstruction. By defining a soft segmentation function within the 

objective function of the reconstruction algorithm, TVR-DART smoothly steers the 

solution toward discrete gray values while minimizing the total variation of the 

boundaries of the discrete solution. Since it is very difficult to know the exact gray 

values in most practical applications, the gray values and thresholds of the 
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segmentation function are automatically estimated in an alternating manner with the 

reconstruction assuming the total number of gray values is known.  
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