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Abstract 

 

To respond to rapid changes in customer demands, many manufacturers have 

adopted the Build-to-Order manufacturing strategy, which inherently requires 

to manage variabilities arising across supply chains. Manufacturers would fail 

to deliver quality service to their customers unless they effectively manage the 

inventory of various parts. In this paper, we propose several analytical models, 

which take into account this variability in Build-to-Order manufacturing 

environment, and show that how they can be used to manage it to achieve the 

desired service to their customers. 
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1. Introduction 
Inspired by the success of Dell Computers, Build-to-Order (BTO) has become a 

powerful and growing trend in the electronics industry. One of the competitive 

advantages from BTO is product variety – being able to offer each customer his own 

personalized product. The goal of BTO is to achieve personalization at mass-production 

prices by eliminating finished goods inventory. But personalization means 

unpredictable variability in demand spread over a product mix as diverse as the market 

itself. The challenge of BTO is to manage that variability without the traditional cushion 

of finished goods inventory [1, 2, 3, 4, 5, 6, 7, 8].  

In this paper, we propose analytical models for rationally managing the variability in 

supply chains inherent in the BTO model. We develop analytical models of managing 

a single part. This work extends successful approaches from financial management to 

the problem of managing variability in demand and order releases. In addition to 

providing sound strategies for rationally managing demand variability, this work also 

provides analytical models of the relationships between the variance in demand for a 
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part and the total cost of supplying it.  

Manufacturers manage their parts supplies by holding a very small inventory and meet 

varying demands by changing the release quantities frequently. Harrison et al. [9] 

showed that a control band policy is optimal for the Stochastic Cash Management 

Problem. This form of policy is described by three parameters {r, R, M} with 0 < r ≤ R 

< M. In their paper, when the cash fund falls to 0, the controller sells off assets to return 

it to r. When the cash fund rises to M, the maximum allowed, the controller invests the 

excess causing the balance to fall to R.  

In translating this problem to one of managing release variability, we introduce two 

additional parameters: m representing the minimum inventory level and M  

representing a physical limit on the maximum inventory level allowed. The minimum 

level protects the manufacturer from the disruptions to his operations that arise when 

parts are not available. In Section 5, we address the question of setting the minimum 

level m. The maximum inventory level M  represents a limit on the inventory the 

manufacturer can accommodate due to space or budget constraints.  

In this setting, a control band policy is described by three parameters {r, R, M} with 0 

≤ m < r ≤ R < M ≤ M . When inventory threatens to fall below m, the minimum allowed, 

the manufacturer increases the release quantity to return it to r. When inventory rises to 

M, the maximum allowed, the manufacturer reduces the release quantity causing the 

inventory to fall to R. These parameters determine the trade-off between the disruptions 

to the supply chain caused by large and small order releases and the costs of inventory 

and space required to avoid them. In Section 3, we discuss models and techniques for 

making these trade-offs intelligently.  

We first describe in Section 2, a discrete, stochastic inventory control model that can be 

used to manage a single part. In Section 3, we propose to solve a corresponding 

Brownian control problem. The Brownian model loses some of the fine structure of the 

discrete model as it only considers the mean and variance of the process. On the other 

hand, the fact that the Brownian model only requires the mean and variance parameters 

is attractive in practice, since detailed distributional information about the demand 

process is either not available or difficult to collect. Although the Brownian control 

problem is generally easier to work with, its solutions do not directly provide solutions 

to our original discrete control problem. In Section 4, we propose to derive 

implementable policies for the discrete model from our solutions to the Brownian 

problem. We complete the paper in Section 5 with some concluding remarks. 

 

2. Discrete Inventory Control Model 
We consider the following discrete time inventory control model. The manufacturer 

makes a single product from a single part. Furthermore, the manufacturer’s production 

facility has limited capacity, and the assembly time is negligible. Customer demands 

for the manufacturer’s product are random. We use Dt to denote the demand at the 

beginning of period t. This demand is fulfilled at the end of the period. For ease of 

exposition, we assume that the demand process {Dt : t =1, 2,...} is an independent, 

identically distributed sequence with mean µ and variance σ2. 

The manufacturer manages a single supplier of the part. To ensure that it does not run 

out, the manufacturer specifies a minimum inventory level m ≥ 0 for the part and strives 



Analytical Models for Variability Management in Manufacturing Supply Chain 19 

to maintain at least that amount on site. In Section 5, we discuss several approaches to 

setting this minimum inventory level. Since customer demand is random, the inventory 

level at the manufacturer’s site will on rare occasions drop below the minimum level. 

These rare events may be brought on by temporary disruptions in the supplier’s 

production or in transportation. In this section, we assume such disruptions will never 

occur or, if they do occur, that by expediting shipments or calling on alternative sources, 

the manufacturer can obtain the required parts before the end of the period. Since the 

costs of shutting down an assembly plant are so high, manufacturers and their suppliers 

go to great lengths to avoid it – including flying in parts from a competitor.  

In addition to the minimum, the manufacturer also specifies a maximum amount   of 

inventory it will allow for the part and strives to keeps its inventory between these 

minimum and maximum values. If the inventory threatens to exceed the maximum level, 

the manufacturer may reduce or even temporarily stop his orders for the part. This min-

max strategy is common in lean manufacturing systems, which promote ‘visual 

inventory controls’. In fact, the manufacturer may set separate minimum and maximum 

levels for the part at different locations, e.g., one set in the central storage area or 

‘marketplace’ and a separate set at the point-of-fit along the assembly line. 

The starting point of this model is a new inventory management policy. The 

manufacturer and supplier agree on a fixed delivery or release frequency of f times per 

period. They also agree on a nominal release quantity of α parts per delivery. Thus, the 

nominal quantity of parts delivered per period is λ = fα. Having a fixed release 

frequency is important when the manufacturer has many suppliers. It allows the 

manufacturer to coordinate and consolidate scheduled deliveries from many locations, 

which facilitates smaller shipments and less inventory while simultaneously holding 

down transportation costs. In Section 4, we return to the question of determining the 

frequency of releases. 

Now we describe the cost structure for our inventory control model. We ignore the 

shipping charges associated with sending the nominal release quantity α and focus on 

the costs involved in deviating from this nominal amount. When the manufacturer 

orders an amount δ larger than the nominal quantity, i.e., when it releases an order for 

α + δ, it must pay cf + cvδ. This charge includes the fixed costs cf representing, for 

example, the cost of dispatching an additional truck, and the variable costs cv 

representing those aspects of the costs that grow with the size of the release. When the 

manufacturer orders an amount δ less than the nominal quantity, i.e., when it releases 

an order for α − δ, it must pay df + dvδ. Naturally, we require that δ ≤ α so the release 

quantities are non-negative. Typically, downward adjustments are less expensive than 

upward adjustments, but nevertheless generate costs in the supply chain. For example, 

the supplier may be forced to carry the extra δ units in inventory for some time. Finally, 

we assume that inventory at the manufacturer’s site incurs a holding cost of h per item 

per unit of time.  

Let Zt be the inventory at the beginning of period t and let Tn be the time at which the 

manufacturer makes the nth adjustment to its release quantity. We denote the size of the 

nth adjustment by δn. The long-run average cost is  
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where, for a set A, 1A is the indicator function of A. Our optimization is to choose a 

release frequency f, nominal release quantity α, and the release policy (adjustment times 

{Tn} and sizes {δn}) so that the expected long-run average cost is minimized subject to 

the constraint that the inventory at the manufacturer’s site must remain between m and 

M . 

 

3. Impulse Control of Brownian Motion 
In this section, we describe a related problem that deals with the impulse control of 

Brownian motion. Suppose that we are given a Brownian motion B = {Bt, t ≥ 0} with 

mean µ and variance σ2. Brownian motion is a continuous time process with 

independent increments. It has continuous sample paths that can take any real values. 

Here, µ is interpreted as the output rate and we are to choose a constant λ that serves as 

the input rate for the Brownian motion. Once λ is fixed, the uncontrolled Brownian 

motion X = {Xt, t ≥ 0} has drift λ − µ and variance σ2. We are to control the Brownian 

motion X so that it remains bounded between m and M . The controls are exercised at 

discrete times by adjusting the Brownian motion upward or downward. The resulting 

controlled process is denoted by Z = {Zt, t ≥ 0}. The Brownian control problem is to 

find the constant λ and a non-anticipating policy {(Tn, δn), n ≥ 1} that minimize the 

expected long-run average cost  
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Here, Tn is the time of the nth adjustment and δn is its size. To reflect the condition in 

the discrete model that the release quantities remain non-negative, we impose the 

constraint that the magnitude of each downward adjustment may not exceed λ. The 

parameters cf, cv, df, dv and h have the same interpretations as in the discrete model. We 

let c(m, M , µ, σ2) denote the average cost under an optimal policy.  

Harrison et al. [9] introduced the term impulse control of Brownian motion to describe 

problems like our Brownian control problem. They showed that a control band policy 

is optimal for their Brownian control problem. This form of policy is described by three 

parameters {r, R, M} with 0 < r ≤ R < M. Extending this result, we anticipate that similar 

policies described by the parameters {r, R, M} where m < r ≤ R < M ≤ M  are optimal 

for our problem. Under these policies, when inventory falls to m, the minimum allowed, 

the optimal policy introduces an impulse raising it to r. When inventory rises to M, the 

optimal policy pushes it down to R.  

 

4. Interpretation of the Brownian Control Policy 
Having solved the Brownian control problem with optimal parameters λ*, r*, R* and M*, 

the challenge of translating the results into an effective policy for the original discrete 

system remains. For this, we also propose a control band policy based on the Brownian 

solution obtained in Section 3.  

We use λ*, r*, R* and M* computed in Section 3 to implement a control band policy for 
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the discrete model. We first set a frequency f* and quantity α* so that λ* = f*α*. If we see 

the net effect of nominal shipments in the rest of the period and the demand for the 

period will leave the inventory level below m, we increase the shipment to α* + (r* − 

m).  

On the other hand, if we see the net effect of nominal shipments in the rest of the period 

and the demand for the period will leave the inventory level above M*, we decrease the 

total shipments for the period by (M* − R*). This total amount can be spread among the 

period’s releases, but then each release will be penalized for fixed cost. Recall that α* 

and f* are chosen so that  

M* − R* ≤ α*f* = λ* . 

Thus, at the end of the period, the inventory will be below M*. 

 

5. Minimum Inventory Level 
The discrete inventory control model and, with it, the Brownian control model address 

the question of how to best maintain inventory between two given limits m and M . 

They are based on the assumption that regardless of the situation the supplier can get 

enough parts to the manufacturer in time. In this section, we directly address the 

question of whether the supplier can do this. To help ensure that it can, the manufacturer 

typically maintains a minimum inventory level m on site.  

In a BTO environment, the manufacturer needs to fulfill customer orders quickly. An 

important performance measure for the manufacturer is the so called fill rate, the 

percentage of orders fulfilled on time. Achieving a high fill rate requires ample 

production capacity and high availability of parts. The manufacturer should set a high 

minimum inventory level m to prevent part shortages, and thus to improve on-time 

delivery of customer orders. On the other hand, setting the minimum level too high, 

incurs the costs and space requirements of excess inventory and robs the supplier of 

flexibility. To reduce supply chain costs, it makes sense to keep the minimum inventory 

level m as small as possible while protecting the manufacturer’s service level.  

Occasionally the inventory level of a part will drop below the minimum level m. These 

exceptions, hopefully rare, do occur. There are many factors, some controllable and 

some not, that cause them. For example, they may be due to a sudden surge of customer 

orders, transportation delays, shipment errors or production problems at the supplier. A 

paper by Choi et al. [10] revealed that, in a capacitated production environment, the fill 

rate depends on which of these exceptions occurs. For example, maintaining an 

inventory above the minimum level m most of the time does not guarantee a high fill 

rate if the supplier’s production is not reliable.  

Suppose, for example, that a supplier cannot ship for k consecutive periods. This might 

arise because of extreme weather, quality problems, etc. The manufacturer’s maximum 

production in a period is limited by its capacity, c – the number of units the 

manufacturer can produce in a period when all the necessary parts are available. This 

implies that c is the minimum inventory necessary for the production process to operate 

without interruption due to part shortages in a single period. Thus, keeping the 

inventory level above c×k allows the manufacturer to operate normally even during an 

interval of k consecutive periods without shipments. Setting the minimum inventory m 

this way, however, simply cost too much. We propose to explore cost effective methods 
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for setting minimum levels that adequately guarantee the manufacturer’s target fill rate.  

Choi et al. [10] provided a bound, in a capacitated production model, to achieve the 

manufacturer’s target fill rate. In addition to demand information and production 

capacity, the bound uses the following two measures from the supplier: Q  the average 

number of undelivered parts in a shortage and p the frequency of part shortages. 

Suppose that k periods with no-shipments is the only possible cause for part shortage. 

Then Q  and p can be computed just from the possibility of part shortage during the 

exceptional periods. For example, when k = 2, the number of parts necessary for the 

first and the second periods are R1 := min{D1, c} and R2 := min{(D1 − c)+ + D2, c}, 

respectively. In this case,  

p = εs(2×P{R1 > m} + P{R1 + R2 >m | R1 ≤ m})  and 

Q = εs(E[(R1 − m)+] + E[(R1 + R2 − m)+]) , 

where εs is the fraction of periods that the part is below the minimum inventory level.  

The k used in the previous discussion depends very much on the transportation mode 

used. For example, it takes 14 days from Asia to North American by sea, and 2 days by 

air. Of course, the cost of different transportation modes differs significantly. 

 

6. Concluding Remarks 
Many manufacturers are striving to build vehicles to order. BTO requires that 

production be organized according to a pull system. Lean manufacturing, the standard 

pull system in the auto industry, promotes ordering only what is needed when it is 

needed. Each supplier must deliver the anticipated usage of each part on a regular 

schedule. When usage varies widely from day to day, this places heavy demands on the 

suppliers and the carriers that are magnified up the supply chain. 

The paper shows analytical models for rationally managing the variability in 

automotive supply chains inherent in BTO. They develop analytical models of the 

economics of managing a single part. This work involves solving the Brownian control 

problem, translating those solutions into workable operating policies within the 

assembly plants and determining the quality of those policies. The models in this paper 

combines advances in stochastic control and deterministic optimization and focuses 

them on a pressing problem in the largest manufacturing industry. 
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