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Abstract 

 
This paper introduces a new type of fuzzy shortest path network problem 
using triangular fuzzy number. To find the smallest path from  each  possible 
path in a network by using  fuzzy distance function. Thus the optimum 
shortest path for the given problem is obtained. 
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Introduction 
The shortest path problem was one of the first network problems studied in terms of 
operations research. In some applications, the numbers associated with the edges of 
networks may represent characteristics other than lengths, and we may want the 
optimum paths, where optimum can be defined by different criteria. The shortest-path 
problem is the most common problem in the whole class of optimum path problems. 
Consider the edge weight of the network as uncertain; which means that it is either 
imprecise or unknown. In 1965, Zadeh [8] introduced the concept of fuzzy set theory 
to meet those problems. In 1978, Dubois and Prade defined any of the fuzzy numbers 
as a fuzzy subset of the real line.  

Okada and Gen (1994) first tried to resolve the issue of incomparability of 
intervals using a ranking strategy of their own but their method seems to work in an 
ad hoc manner and so the result is not always unique and self-explanatory when used 
in an algorithm for solving the shortest path problem.  In 1997, Heilpern [9] proposed 
three definitions of the distance between two fuzzy numbers. These include that mean 
distance method is generated by expect values of  fuzzy numbers, distance method is 
combined by a Minkowski distance and the h-levels of the closed intervals of fuzzy 
numbers, and geometrical distance method is based on the geometrical operation of 
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trapezoidal fuzzy numbers. All of them use real number to calculate the distance. Yao 
and Wu[13], used from signed distance to define ordering. Chen[12], first normalized 
fuzzy numbers and then used from maximizing set and minimizing set to define 
ordering. 

For ranking of fuzzy numbers, a fuzzy number needs to be evaluated and 
compared with the others, but this may not be easy. Fuzzy set ranking has been 
studied by many researchers. Some of these ranking methods have been compared 
and reviewed by Bortolan and Degain[1]. More recently by Chen and Hwang[2], and 
it still receives much attention in recent years[3,4,5,6]. Many methods for ranking 
fuzzy numbers have been proposed, such as representing them with real numbers or 
using fuzzy relations. Wang and Kerre [6,7] proposed some axioms as reasonable 
properties to determine the rationality of a fuzzy ranking method and systematically 
compared a wide array of  existing fuzzy ranking methods. 

Here, first determine the number of paths in a given network and calculate fuzzy 
distance for each path. Then find the minimum distance value among the paths. That 
minimum path is fuzzy shortest path for a network. 
 
 
Triangular Fuzzy Number 
The fuzzy number ã  = (a1, a2, a3) is a triangular number, denoted by (a1, a2, a3), its 
membership function ãμ  is given by 
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Figure 1: Membership function of a fuzzy number ã . 
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Positive Fuzzy Number 
A fuzzy number ã  is called a positive fuzzy number if its membership function is 
such that    ãμ (x) = 0 ∀  x < 0. 

 
Addition of Two Fuzzy Numbers 
Let ã  and b%  two triangular fuzzy numbers. An addition of fuzzy numbers is 
c a b= ⊕ %% %  defined by the membership function. 

             ã ã( ) min{ ( ), ( )}bt Sup u vμ μ μ= %  
             t u v= +  
Addition of ã  and b%  is represented as (a1, a2, a3) ⊕ (b1, b2, b3). Therefore, the 

function principle is 
 c a b= ⊕ %% %  = (a1, a2, a3) ⊕ (b1, b2, b3)  
                  = (a1+b1, a2 + b2, a3+b3). 

 
 
Ranking Of Fuzzy Number with Distance Method 
Let all of fuzzy numbers be either positive or negative. Without less of generality, 
assume that all of them are positive. The membership function of a  R is ua(x)=1, if x 
= a; and  ua(x) = 0, if x ≠ a. Hence if a = 0  we have the following                          
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Definition: For u and v ∈   E, define the ranking of u and v by saying 

 
    d (u ,u0 ) > d( v , u0)    iff  u f  v, 
    d (u , u0 ) < d (v , u0 )  iff  u p   v, 
    d (u , u0 ) = d ( v, u0 )  iff  u ≈  v.        

 
Property 1. Suppose u and v  ∈  E are arbitrary then, 

(i) if u = v then  u = v, 
(ii) if v ⊆  u and u (r)2 + u (r)2 > v (r)2 + v (r)2 for all r ∈  [0,1] then v p  u. 

 
Remark 1.The distance triangular fuzzy number u = (a, b, c) of  u0 is defined the 
following  

d(u , u0 ) = [ 2a2 +  b2 / 3 + c2 / 3  + a (c-b)]1/2.              
                                                       …..Eqn(1). 
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Algorithm  
Step-1: Find the number of paths.                        
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Step-2:  Determine the fuzzy distance for each path (Pij).    

     d( Pm ) = [ 2a2 + b2 / 3 + c2 / 3 + a (c-b) ] ½     
            where Pm = ( a, b, c), m= 1 , 2, ….k. 
 

Step-3: Select the minimum path by using the function Pij = min [d1(Pij) , d2(Pij) 
,…dk(Pij) ]  

 where i , j = 1,2,……..n for all i ≠ j. Thus, the shortest path is obtained.  
            
 
 

Numerical Example 
 

 
 
 

In this example, the graph consists of 6 nodes and 8 edges. There are four paths 
available such as P1, P2, P3 and P4. Determine the fuzzy distance of each paths using 
Eqn(1). Now compare the paths which is smallest than the other paths. Thus, the 
fuzzy shortest path is found.  

 
 

PATHS PATH 
LENGTH 

FUZZY 
DISTANCE RANK 

P1 (1-2-4-6) (6,10,16) 15.0552 3 
P2 (1-2-5-6) (6,10,14) 13.9521 1 
P3 (1-3-4-6) (5,10,16) 14.0947 2 
P4 (1-3-5-6) (7,12,16) 16.1037 4 
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