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Abstract 
 

Quick sort is generally considered to be the best internal sorting algorithm, 
and is often used as a yardstick by which the efficiency of other sorting 
algorithms is compared. It is, therefore essential that its performance is studied 
thoroughly. This includes studying the worst case behaviour of the algorithm, 
and especially when the algorithm is experimentally evaluated. The worst case 
running time of quick sort algorithm is O(n2 ). This paper proposes a new 
variant of quick sort, which reduces the running time of the algorithm to n 
log(n). Two versions of the quick sort are being studied – the Classical quick 
sort and the proposed one. A comparison is made in terms of running time 
which is further established by mathematical analysis. The simulation result 
shows that proposed algorithm is faster than Classical quick sort in the worst 
case for sorting the same input data size. 
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Introduction 
Sorting data is one of the most fundamental problems in Computer Science, especially 
if the arranging objects are primitive ones, such as integers, bytes, floats, etc. Since 
sorting methods play an important role in the operations of computer and other data 
processing systems, there has been an interest in seeking new algorithms better than 
the existing ones. 
 Donald Knuth [3] reports that “computer manufacturers of the 1960s estimated 
that more than 25 percent of the running time on their computers was spent on sorting, 
when all their customers were taken into account. In fact, there were many 
installations in which the task of sorting was responsible for more than half of the 
computing time..” As i expected, sorting is one of the most heavily studied problems 
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in computer science. Considerable effort has been made to design sorting algorithms 
with optimal asymptotic efficiency. Of course, the speed of sorting can depend quite 
heavily on the environment in which the sorting is done and the distribution of items. 
 Quick sort is considered the most efficient sorting algorithm as it is an in-place 
algorithm (even though it’s a recursive algorithm, it uses a small auxiliary stack), and 
has an average sorting time of n log(n) to sort n items. The algorithm has been 
analyzed and studied extensively in [1], [5] and [6]. The main drawback of the 
algorithm is its worst case time complexity of O(n2 ), which occurs when the list of 
values is already sorted or nearly sorted, or sorted in reverse order [7]. Quicksort is a 
divide-and-conquer algorithm  
 Since its development in 1961 by Hoare, the Quick sort algorithm has experienced 
a series of modifications aimed at improving the O(n2 ) worst case behavior. The 
performance of quicksort[2] depends on the choice of pivot element as well as the 
sorting techniques that is being used to sort the sublist of trivial size. Moreover, 
performance also depends on the way partitioning is done. In this study, we propose a 
new variant of quick sort which considers the above mentioned criteria to reduce the 
worst case running time. 
 The rest of this paper is organized as follows. In section 2 we give a brief review 
of classical quick sort.Section3 introduces the proposed variant of quick sort. Section 
4 discusses the performance analysis. Section5 presents the comparative experimental 
results. The paper concludes with section6. 
 
 
Classical Quick sort  
The classical approach of the Quick sort is based on choosing either the first or the 
last key as the pivot element. To sort a list of n values represented by a one 
dimensional array A indexed from 1 to n, this algorithm partitions the array into two 
parts, a left subarray and a right subarray. The keys in the array will be reordered such 
that all the elements in the left subarray are less than the pivot and all the elements in 
the right sub array are greater than the pivot. Then the algorithms proceeds to sort 
each subarray independently. Different choices for the pivot results in different 
variations of the Quick sort algorithm. 
 
 
Proposed Algorithm 
The proposed algorithm adopts different approach for pivot selection and partitioning 
such that pivot element always comes near the middle in a list of keys. Given an array 
of size n, the algorithm, recursively partitions the array into two sub-arrays till the 
array-size meets the trivial point (<=3). The approach consists of three phases, firstly 
pivot selection phase, second partition phase and finally sorting trivially sized sub-
arrays phase. Based on the above concepts, we have the following algorithm for 
sorting a list 
 
Algorithm 
QUICKSORT (L, p, r) 
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1 size ← r-p+1 
2 if size <= 3 
3 then  
4 MANUAL_SORT (L, p, r) 
5 else 
6 pivot←CALCULATE_PIVOT(L,p,r) 
7 q ← PARTITION(L,p,r,pivot) 
8 QUICKSORT (L, p, q) 
9 QUICKSORT (L,q+1,r) 
 
 
Pivot Selection 
Given a list L[p..r] of keys of size n, in the first step, we found the middle location at 
n/2 and the list is divided into two sublist L[left] and L[right].Once the middle 
location is found, minimum and maximum value from the two sublists are calculated, 
where left<=n/2 and right > n/2 
 The pivot value is then found as a mean of four values which are, min(L[left]), 
max(L[left]), min(L[right]) and max(L[right]). 
 pivot = (min(L[left])+ max(L[left])+ min(L[right])+ max(L[right]))/4. 
 
Partitioning 
The key to the algorithm is the PARTITION procedure, which rearranges the array L 
in-place. The PARTITION procedure selects a pivot element around which the 
partition of the sub array L[p---r] has to be done. It uses the HOARE type 
partitioning, which divides the list in two partitions L[p..i] and L [i+1..r]. 
PARTITION ( L, p, r, pivot) 
 1 i =l; j=r; 
 2  while TRUE 
 3 do 
 4 while L[i] <= pivot 
 5 do  i++ 
 6  while L[j] >= pivot 
 7 do j-- 
 8   if i>=j 
 9  then  
10  break 
11  else 
12  exchange L[i] ↔L[j] 
 
 This procedure is executed on both the sub arrays L[left] and L[right] 
simultaneously. In each iteration of the partition, elements of the two subarrays are 
compared with the pivot element. There are two cases to be considered depending on 
the outcome of the tests in line 4 and line 6, which are when L[i] <= pivot and when 
L[j] >= pivot. When L[i] <= pivot, the only action in the loop is to increment i and 
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when L[j] >= pivot, the only action is to decrement j. After the termination of the 
loops at line 4 and line 6, L[i] and L[j] are swapped. 
 The procedure terminates at i=j, This means that all the elements on the left and 
on the right subarrays have been visited and compared with. This condition is 
important to ensure the correctness of the algorithm. 
 
Manual Sorting 
Manual sorting is done once the array size reaches the trivial point. Insertion sort can 
be one of the optional choice to sort small size array. 
MANUAL_SORT(L, p, r) 
 
1size  r -l +1 
2 if size <= 1 
3 then 
4 return; 
5 if size == 2 
6 then 
7 if L[l] > L[r]  
8 then 
9 exchange L[l]↔L[r] 
10 if size ==3  
11 then 
12 if L[l]>L[r-1] 
13 then  
14 exchange L[l] ↔ L[r-1] 
15 if(L[l] > L[r] 
16 then  
17 exchange L[l] ↔ L[r] 
18 if L[r-1] > L[r] 
19 exchange L[r-1]↔L[r] 
 
 
Performance analysis of the proposed algorithm 
The proposed algorithm gives better running time than classical quick sort algorithm 
as it is based on mean calculation for selection of the pivot element. Here, arithmetic 
mean is calculated on four extreme values i.e two minimum extreme and two 
maximum extreme values. This pivot selection procedure is repeated for each iteration 
of the quick sort till the trivial case is achieved. Thus, in this scenario, there will not 
be a situation which will lead to a worst case partitioning. So, the partitioning can 
always claimed to be balanced. 
 The partitioning requires at most n comparisons, which costs θ (n) time. Since the 
partitioning procedure chooses mean of extreme values as pivot[4], and mean always 
comes between extreme values, so, partitioning splits the list into 8-to-2. Thus, the 
recurrence for the proposed algorithm can be represented as 
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  T (n) = T (8n/10) + T(2n/10) + c n 
 
 The recurrence terminates at the boundary condition log10/8(n). The total cost of 
the quick sort is therefore, O (nlgn). With a 8-to-2 proportional split at every level of 
recursion, which intuitively seems quite unbalanced, this proposed variants of 
quicksort, runs in O(nlgn, which is same as if the split were right down the middle. 
 
 
Experimental Evaluation 
In this section, we present a performance comparison of our development with the 
Classical quick sort algorithm. To study the effectiveness of our algorithm we have 
used turbo C++ to implement both the versions of the algorithm.  
 The experiments were conducted on a computer with an Intel Pentium 4 processor 
with a speed of 2.66 MHz, and 512 MB of RAM. The sizes of the arrays ranged from 
n= 500 to n = 500,000 elements. Both the algorithms are implemented on the same 
machine for the same input data. Table1 summarizes and provides a means to briefly 
compare the two algorithms. Our simulation results show that the performance of 
proposed algorithm is better than quick sort in term of running time (Table 1).  

 
 

Table 1: Comparisons of algorithms. 
 

Input Size (n) Classical Quick sort Proposed Algorithm 
500 0.241 0.193 
1000 1.64 0.923 
5000 3.313 2.245 
10000 20.478 13.321 
50000 40.456 28.093 

 
 

 
 

Figure 2: Running time of both classical Quick sort and proposed algorithms. 
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 The performance of the proposed algorithm and the Classical quick sort are shown 
in figure2. The X-axis in this graph represents the input size and Y-axis represents the 
running time (ms). In the graph, we see that, for smaller input size (1000-5000) the 
running time of our algorithm is approximately same as classical quick sort. However, 
for larger input size (above 10000) the algorithm outperforms the classical quick sort 
algorithm. 
 
 
Conclusion and Future Work 
This paper presented a comparative performance of the proposed algorithm with 
respect to classical quick sort. It is found that the worst case running time of the 
algorithm is of the order of n log(n). This reduction has been possible because 
partitioning is done simultaneously from both directions and pivot selection is based 
on mean of four extreme values. Since the partitioning is happening simultaneously, 
the algorithm is likely to give better results if this operation is performed in parallel 
environment. 
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