
International Journal of Information Sciences and Application.
ISSN 0974-2255 Volume 3, Number 2 (2011), pp. 119-125
© International Research Publication House
http://www.irphouse.com

Improved Search Quality Using Rank Aggregation

N. Sathish Kumar1, G. Sampath Kumar2, N. Srinivas Rao3 and N. Satyanarayana4

1Associate Professor, Department of CSE, SVS Institute of Technology, Bheemaram,

Hanamkonda, Warangal-50600l, A.P., India
E-mail: satish4info@gmail.com

2Assistant Professor, Department of CSE, Adam’s Engineering College
Seetarampatnam, Paloncha-507115, Khammam, Dt. A.P., India

E-mail: kasyapsam@hotmail.com
3Associate Professor, Department of CSE, Adam’s Engg. College, Seetarampatnam,

Paloncha-507115, Khammam Dt., A.P., India
E-mail: srinivas.nune@gmail.com

4Professor, Department of CSE, Nagole Institute of Technology & Sciences
Hyderabad, A.P., India

E-mail: nsn1208@gmail.com

Abstract

In this paper, we study the rank aggregation problem in the context of the web,
i.e. the problem of ranking result from various sources. There are various
ranking aggregation methods available. We design an algorithm, based on
which we propose a new rank aggregation method. It is observed that our
proposed method is more effective and efficient than other well-known
methods.

Keywords: Crawling, Multi-criteria selection, Meta Search Engines, Rank
Aggregation, and Word Association.

Introduction
To provide users a certain degree of robustness of search in the face of various
shortcoming and bases of individual search engines, we can rank the database with
respect to several small subsets of the queries, and aggregate these rankings. This is
commonly known as rank aggregation. Rank aggregation can be used in situations
where the user preference includes a variety of criteria, and the logic of classifying a
document as acceptable or not is too complex such as multi-criteria selection or word
association queries. Multi criteria selection can be when a user tries to choose a

120 N. Sathish Kumar et al

product from its database and word association queries can be when the user tries to
search for a good document on a topic, knowing a list of keywords that collectively
describe the topic, but not sure that the best document on the topic necessarily
contains all of them. Ranking a list of several alternatives based on one or more
criteria is encountered in many situations like in identifying the best alternatives [1].
In case of single criteria for ranking, the task is easy and is simply a reflection of the
judges (search engine in the case of meta-search, individual criterion for multi-criteria
selection, and subsets of queries in the case of word association queries) opinions. In
contrast, there can be another case when individual ranking preferences of several
judges is given.

Meta Search Engines
In order to rank the results obtained, we have made use of rank aggregation strategies.
A meta search engine can be use to transmit user’s search simultaneously to several
individual search engines and their database of web pages and get results from all the
search engines queried [2]. A lot of time can be saved if the search is initiated at a
single point sparing the need to learn and use several separate search engines.

Fig 1: Architecture of a Meta Search Engine

 Meta search engines help us in achieving the following objectives- as the World
Wide Web is a huge unstructured corpus of information, various search engines crawl
the WWW from time to time and index the web pages [3]. However, it is virtually
impossible for any search engine to have the entire web indexed. Most of the time a
search engine can index only a small portion of the vast set of web pages existing on
the Internet. Each search engine crawls the web separately and creates its own
database of the content. Therefore, searching more than one search engine at a time
enables us to cover a larger portion of the World Wide Web. Secondly, crawling the
web is a long process, which can take more than a month whereas the content of many

Improved Search Quality Using Rank Aggregation 121

web pages keep changing more frequently and therefore, it is important to have the
latest updated information, which could be present in any of the search engines.
However, good ranking strategies are needed in order to aggregate the results
obtained from the various search engines. Quite often, many web sites successfully
spam some of the search engines and obtain an unfair rank. By using appropriate rank
aggregation strategies, we can prevent such results from appearing in the top results of
a meta-search. Meta search engines can be categorized as

i. Meta search engines for serious deep digging.
ii. Meta Search engines which aggregate the results obtained from various

search engines.
iii. Meta Search engines which present results without aggregating them.

 Meta search engine of the second type i.e. which aggregate the results obtained is
more useful. We have proposed an aggregation method for such an aggregation. Any
method for rank aggregation [4] for Web applications must be capable of dealing with
the fact that only the top few hundred entries of each ranking are available. Of course,
if there is absolutely no overlap among these entries, here isn't much any algorithm
can do; the challenge is to design rank aggregation algorithms that work when there is
limited but non-trivial overlap among the top few hundreds or thousands of entries in
each ranking. Finally, in light of the amount of data, it is implicit that any rank
aggregation method has to be computationally efficient. There are several applications
of rank aggregation methods in the context of searching and retrieval [5] such as –
Meta-Search, Aggregating Ranking Functions, Spam Reduction, Word Association
Techniques and Search Engine Comparison.

Ranking
Given a universe U, an ordered list (or simply, a list) L with respect to U is an
ordering of a subset S of U, i.e., L = [x1 > x2 > ... > xd], with each xi in S, and > is
some ordering relation on S. Also, if I in U is present in L, let L(i) denote the position
or rank of i (a highly ranked or preferred element has a low-numbered position in the
list). For a list L, let |L| denote the number of elements. By assigning a unique
identifier to each element in U, we may assume without loss of generality that U = {1,
2, ..., |U|}. Depending on the kind of information present in L, three situations arise –

1. If L contains all the elements in U, then it is said to be a full list. Full lists are,
in fact, total orderings of U. For instance, if U is the set of all pages indexed
by a search engine, it is easy to see that a full list emerges when we rank pages
with respect to a query according to a fixed algorithm [1].

2. There are situations where full lists are not convenient or even possible.

 For instance, let U denote the set of all Web pages in the world. Let L denote the
results of a search engine in response to some fixed query. Even though the query
might induce a total ordering of the pages indexed by the search engine, since the
index set of the search engine is almost surely only a subset of U, we have a strict
inequality |L| < |U|. In other words, there are pages in the world which are unranked
by this search engine with respect to the query. Such lists that rank only some of the

122 N. Sathish Kumar et al

elements in U are called partial lists. A special case of partial lists is the following – If
S is the set of all the pages indexed by a particular search engine and if L corresponds
to the top 100 results of the search engine with respect to a query, clearly the pages
that are not present in list L can be assumed to be ranked below 100 by the search
engine. Such lists that rank only a subset of S and where it is implicit that each
ranked element is above all unranked elements, are called top d lists, where d is the
size of the list. To measure the distance between two full lists with respect to a set S,
distance measures are:
1. The distance (D1) is the sum, over all elements i in S, of the absolute difference
between the rank of I according to the two lists. Formally, given two full lists L and
M, their distance (D1) is given by-
 D1 (L, M) = Σi |L(i) - M(i)| (1)

 After dividing this number by the maximum value (1/2)|S|2, one can obtain a
normalized value of the distance (D1), which is always between 0 and 1. The distance
(D1) between two lists can be computed in linear time.

2. The second distance (D2) counts the number of pair wise disagreements between
two lists; that is, the distance between two full lists L and M is
 D2 (L, M) = |{(i, j) : i < j, L(i) < L(j) but M(i) > M(j)| (2)

 Dividing this number by the maximum possible value (1/2)S(S - 1) we obtain a
normalized version of the distance (D2). The distance (D2) for full lists is the "bubble
sort" distance, i.e., the number of pair wise adjacent transpositions needed to
transform from one list to the other. The distance (D2) between two lists of length n
can be computed in n log n time using simple data structures. The above measures are
metrics and extend in a natural way to several lists. Given several full lists L, M1, ...,
Mk, for instance, the normalized distance (D1) of L to M1, ..., Mk is given by-
 D1 (L, M1, ... , Mk) = (1/k) Σi D1(L, Mi) (3)

 One can define generalizations of these distance measures to partial lists. If M1,
..., Mk are partial lists, let U denote the union of elements in M1, ..., Mk, and let L be
a full list with respect to U. (3) Given one full list and a partial list, the distance (D1)
weights contributions of elements based on the length of the lists they are present in.
More formally, if L is a full list and M is a partial list, then:
 SD1 (L, M) = Σi in M |(L(i)/|L|) - (M(i)/|M|)| (4)

 We will normalize SD1 by dividing by |M|/2.

Our Proposed Work
In our proposed algorithm, the distances are used to rank the various results. Let P1,
P2,………., Pn be partial lists obtained from various search engines. Let their union
be S. A weighted bipartite graph for distance (D1) optimization (N, SP, D1) is defined
as-
 N = set of nodes to be ranked

Improved Search Quality Using Rank Aggregation 123

 SP = set of positions available

 D1(e,p) = is the distance (from the Pi’s) of a ranking that places element ‘e’ at
position ‘p’, given by-
 D1(e,p) = ΣI=1 k | Pi(e)/|Pi| - p/n| (5)

where n = number of results to be ranked and |Pi| gives the cardinality of Pi.
 Computation of aggregation for partial lists is NPhard. Hence we have used
distance measure (D1). This problem can be converted to a minimum cost perfect
matching in bipartite graphs. There are various algorithms for finding the minimum
cost perfect matching in bipartite graphs.

Our proposed algorithm works as follows
Step1: Calculate the reduced cost matrix from the given cost matrix by subtracting
the minimum of each row and each column from all the other elements of it.

Step2: Cover all the zeroes with the minimum number of horizontal and vertical lines.

Step3: If the number of lines equals the size of the matrix, find the result.

Step4: If all of the zeroes are covered with fewer lines than the size of the matrix, find
the minimum number that is uncovered.

Step5: Subtract it from all uncovered values and add it to any value(s) at the
intersections of the lines.

Step6: Repeat until result is obtained.

 In evaluating the performance of the ranking strategies for all the queries, we have
chosen precision as a good measure of relative performance because all the ranking
strategies work on the same set of results and try to get the most relevant ones to the
top. Hence, a strategy that has a higher precision at the top can be rated better from
the user’s perspective. We have plotted the precision of the ranking strategies with
respect to the recall. The recall is calculated as the number of relevant documents
retrieved/total number of relevant results thus judged. It can be observed that on an
average, our proposed ranking aggregation method gives better precision for the given
set of results.

124 N. Sathish Kumar et al

Table 1 : Precision of several Rak Aggregation methods at a give Recall.

Fig 2: Graphical Representation of Precision and Recall

Conclusion
We have proposed a rank aggregation method which works on our designed
algorithm. This method has the advantage of being applicable in a variety of contexts
and tries to use as much information as available. Our method is simple for
implementation and do not have any computational overhead as compared to other
methods. It is efficient and effective and provides robustness of search in the context
of web.

References

[1] J. I. Marden. Analyzing and Modeling Rank Data. Monographs on Statistics
and Applied Probability, No 64, Chapman & Hall, 1995.

[2] Meng, W., Yu, C., & Liu, K.-L., Building efficient and effective metasearch
engines. ACMComputing Surveys, 2001, 34(1), 48–89.

Improved Search Quality Using Rank Aggregation 125

[3] Aslam, J. A., Montague, M., Models for metasearch. In: Proceedings of the 24th
ACMSIGIR conference (pp. 276–284), 2001.

[4] Cynthia Dwork, Ravi Kumar, Moni Naor, D Siva Kumar, Rank Aggregation
Methods for the web. In proceedings of the Tenth World Wide Web
Conference, 2001.

[5] Baeza-Yates, R., & Ribeiro-Neto, B., Modern information retrieval. New York:
ACM Press, 2001.

[6] Amitay, E., Carmel, D., Lempel, R., & So.er, A., Scaling IR-system evaluation
using term relevance sets. In Proceedings of the 27th ACMSIGIR conference,
2004, pp. 10–17.

[7] Soboro., I., Nicholas, C., & Cahan, P. Ranking retrieval systems without
relevance judgments. In Proceedings of the 24th ACM SIGIR conference,
2001, pp. 66–73.

[8] Croft, W. B., Combining approaches to information retrieval. In W. B. Croft
(Ed.), Advances in information retrieval: recent research from the center for
intelligent information retrieval. Kluwer Academic Publishers, 2000.

[9] Cynthia Dwork, Ravi Kumar, Moni Naor, D Siva Kumar, Rank Aggregation
Methods for the web. In proceedings of the Tenth World Wide Web
Conference, 2001.

[10] Fan, W., Fox, E. A., Pathak, P., & Wu, H. The effects of fitness functions on
generic programming-based ranking discovery for Web search. Journal of the
American Society for Information Science and Technology, 55(7), 2004, 628–
636.

[11] Hawking, D., Craswel, N., Bailey, P., & Gri.ths, K., Measuring search engine
quality. Information Retrieval, 4(1), 2001, 33–59.

[12] Nuray, R., & Can, F., Automatic ranking of retrieval systems in imperfect
environments. In Proceedings of the 26th ACM SIGIR conference
2003,pp.379–3

