
International Journal of Information Sciences and Application.
ISSN 0974-2255 Volume 4, Number 1 (2012), pp. 35-43
© International Research Publication House
http://www.irphouse.com

An Approach for Selection and Maintenance of
Materialized View in Data Warehousing

Sanket Patel and Deepak Dembla

Department of Computer, Arya Institute of Engineering and Technology,

Jaipur, India
E-mail: it.sanketpatel@gmail.com

Abstract

Quick response time and accuracy are important factors in the success of any
database. In large databases particularly in distributed database, query
response time plays an important role as timely access to information and it is
the basic requirement of successful business application. A data warehouse
uses multiple materialized views to efficiently process a given set of queries.
The materialization of all views is not possible because of the space constraint
and maintenance cost constraint. Materialized views selection is one of the
crucial decisions in designing a data warehouse for optimal efficiency.
Selecting a suitable set of views that minimizes the total cost associated with
the materialized views is the key component in data warehousing.
Materialized views are found useful for fast query processing. This paper
gives the results of proposed tree based materialized view selection algorithm
for query processing. In distributed environment where database is distributed
the node on which query should get executed also plays an important role.
This paper also proposes node selection algorithm for fast materialized view
selection in distributed environment. It found that the proposed algorithm
performs well as compare to other materialized view selection strategies.

Keyword: Data Warehousing, Query Processing Cost, Storage Space. View
Materialization, View Selection, View-Maintenance

Introduction
A basic requirement for the success of a data warehouse is the ability to provide
decision makers with both accurate and timely consolidated information as well as

36 Sanket Patel and Deepak Dembla

fast query response times. For this purpose, a common method that is used in practice
for providing higher information and best response time is the concept of materialized
views, where a query is more quickly answered. One of the most important decisions
in designing data Warehouse is selecting views to materialize for the purpose of
efficiently supporting the decision making. The view selection problem defined is to
select a set of derived views to materialize that minimizes the sum of total query
response time & Maintenance of the selected views. So the goal is to select an
appropriate set of views that minimizes total query response time and also maintains
the selected views [1, 13]. The decision “what is the best set of views to materialize?”
must be made on the basis of the system workload, which is a sequence of queries and
updates that reflects the typical load on the system. One simple criterion would be to
select a set of materialized view that minimizes the overall execution time of the
workload of queries.
 In this paper two algorithms are proposed. First is tree based materialized view
selection, in which views are selected at the time of query processing. Second is node
selection, which selects nodes in the distributed environment for the execution of the
query. In next section various recent past work that has been carried out in the field of
materialized view selection and their utilization for the query processing are stated.
The proposed algorithm and its implementation details are explained in Section 3. The
experiment results that are obtained after the implementation of algorithm are stated
and discussed in Section 4. The work that has been carried out is concluded in last
section.

Related Work
The distributed model is quickly becoming the preferred medium for file sharing and
distributing data over the Internet. A distributed network consists of numerous peer
nodes that share data and resources with other peers on an equal basis. Unlike
traditional client-server models, no central coordination exists in a distributed system;
thus, there is no central point of failure. Distributed networks are scalable, fault
tolerant, and dynamic, and nodes can join and depart the network with ease. The most
compelling applications on distributed systems to date have been file sharing and
retrieval. For example, P2P systems such as Napster [2, 12] and KaZaA [3], are
principally known for their file sharing capabilities, for example, the sharing of songs,
music, and so on. Furthermore, researchers have been interested in extending
sophisticated infrared (IR) techniques such as keyword search and relevance retrieval
to distributed databases.
 It has been observed that in most typical data analysis and data mining
applications, timeliness and interactivity are more important considerations than
accuracy; thus, data analysts are often willing to overlook small inaccuracies in the
answer, provided that the answer can be obtained fast enough. This observation has
been the primary driving force behind the recent development of approximate query

An Approach for Selection and Maintenance of Materialized 37

processing techniques for aggregation queries in traditional databases and decision
support systems [4], [5]. Numerous approximate query processing techniques have
been developed: The most popular ones are based on random sampling, where a small
random sample of the rows of the database is drawn, the query is executed on this
small sample, and the results are extrapolated to the whole database. In addition to
simplicity of implementation, random sampling has the compelling advantage that, in
addition to an estimate of the aggregate, one can also provide confidence intervals of
the error, with high probability. Broadly, two types of sampling-based approaches
have been investigated: 1) pre-computed samples, where a random sample is pre-
computed by scanning the database and the same sample is reused for several queries
and 2) online samples, where the sample is drawn “on the fly” upon encountering a
query. So the selection of these random samples in distributed environments for query
processing is addressed in [6]. An efficient implementation of materialized sample
view is difficult. The primary technical contribution is given in [7] in terms of index
structure called the Append ability, Combinability, and Exponentiality (ACE) Tree,
which can be used for efficiently implementing a materialized sample view. Such a
view, stored as an ACE Tree, has the following characteristics:
 It is possible to efficiently sample (without replacement) from any arbitrary range
query over the indexed attribute at a rate that is far faster than is possible by using
techniques proposed by Olken [8] or by scanning a randomly permuted file. In
general, the view can produce samples from a predicate involving any attribute having
a natural ordering, and a straightforward extension of the ACE Tree can be used for
sampling from multidimensional predicates.
 The resulting sample is online, which means that new samples are returned
continuously as time progresses and in a manner such that at all times, the set of
samples returned is a true random sample of all of the records in the view that match
the range query. This is vital for important applications like online aggregation and
data mining.
 Finally, the sample view is created efficiently, requiring only two external sorts of
the records in the view and with only a very small space overhead beyond the storage
required for the data records. Note that although the materialized sample view is a
logical concept, the actual file organization used for implementing such a view can be
referred to as a sample index, since it is a primary index structure for efficiently
retrieving random samples.
 The basic structure of ACE tree is given in the Figure 1. Ii;j refers to the jth
internal node at level i. The root node is labeled with a range I1;1:R = [0 – 100],
signifying that all records in the data set have key values within this range. The key of
the root node partitions I1;1:R into I2;1:R = [0 – 50] and I2;2:R = [51 – 100]. Similarly,
each internal node divides the range of its descendents with its own key.

38

Fi

 The ranges associated
ranges associated with eac
For example, consider the
that we encounter along
L4:S1 has a random sampl
in the range 0-50, L4:S3 ha
random sample in the rang
 A number of paramete
frequencies, query costs,
views to be materialized.
such that the total cost f
comparing the cost of eve
multiple view processing
best processing plan becau
 In case of 0-1 Program
query to generate a sing
programming techniques.
can definitely get the best
A* Heuristic Algorithm [
S is given, to deliver a se
that the total maintenance

Sanket Patel and D

igure 1: Basic structure of ACE tree

d with each section of a leaf node are dete
ch internal node on the path from the root n
e path from the root node down to leaf node
the path are 0-100, 0-50, 26-50, and 38-50
le of records in the range 0-100, L4:S2 has a
as a random sample in the range 26-50, wher
ge 38-50.
ers, including users query frequencies, base
should be considered in order to select an
 Heuristic Algorithm (HA) [9] will set mat

for query processing and view maintenance
ery possible combination of nodes. HA algori

plans regardless of their query cost. HA m
use HA only works with the optimal plans.

mming Algorithm [10] it considers all possible
gle optimal view processing plan by applyi

This works with all the possible join plan tr
view processing plan in terms of query acces

11,14] , an AND-OR view graph and disk sp
et of views M that has an optimal query resp
e cost of M is less than by satisfying the co

Deepak Dembla

ermined by the
node to the leaf.
e L4, the ranges
0. Thus, for L4,
random sample
reas L4:S4 has a

relation update
n optimal set of
terialized views

is minimal by
thm determines

may include the

e plans for each
ing 0-1 integer
ees, therefore it
ss frequency. In
pace constraints
ponse time such
onstraint S. A*

An Approach for Selection and Maintenance of Materialized 39

algorithm searches for an optimal solution in search graph.
 Harinarayan et al. [15] presented a greedy algorithm for the selection of
materialized views so that query evaluation costs can be optimized in the special case
of “data cubes”. However, the costs for view maintenance and storage were not
addressed in this piece of work. Yang et al. [16] proposed a heuristic algorithm which
utilizes a Multiple View Processing Plan (MVPP) to obtain an optimal materialized
view selection, such that the best combination of good performance and low
maintenance cost can be achieved. However, this algorithm did not consider the
system storage constraints. Himanshu Gupta and Inderpal Singh Mumick [17]
developed a greedy algorithm to incorporate the maintenance cost and storage
constraint in the selection of data warehouse materialized views. “AND-OR” view
graphs were introduced to represent all the possible ways to generate warehouse
views such that the best query path can be utilized to optimize query.
 Ziqiang Wang and Dexian Zhang [18] proposed a modified genetic algorithm for
the selection of a set of views for materialization. The proposed algorithm is superior
to heuristic algorithm and conventional genetic algorithm in finding optimal solutions.
Kamel Aouiche et al. [19] proposed a framework for materialized view selection that
exploits a data mining technique (clustering), in order to determine clusters of similar
queries. They also proposed a view merging algorithm that builds a set of candidate
views, as well as a greedy process for selecting a set of views to materialize.

Proposed Algorithm and Implementation Details
In distributed database environment database is present on various nodes. It may
happen that same copy of database is present on multiple nodes. So query execution
on each and every node will be cumbersome and time consuming. This is more
complicated when materialized views are created for the distributed database. The
maintenance and selection of materialized views for query execution is challenging
task. Two algorithms are proposed for handling the problem of materialized view
maintenance and selection.
 The first algorithm is for generation and maintenance of materialized view. The
tree based approach is used for creating and maintaining materialized views. Initially
all records are arranged in ascending order of their key values. Then the middle record
is selected as root element of tree. The records are then split till the threshold doesn’t
reach so that the leaf of tree should contain the number of records that will be present
in materialized view. Then the materialized view will be created for each leaf node
indirectly each leaf represent materialized that has to be created and maintain. The
materialized view is selected as per the query the records for which the query is
intended the materialized view for those records will be selected for the processing.
This minimizes the total execution cost. The selective approach can also be used for
creating the materialized views that minimizes the storage cost.
 The second algorithm is for node selection. This algorithm decides the nodes in
the distributed environment for which materialized view should be created, updated or
to be maintained. The random walk algorithm is used as base for designing the node
selection algorithm and gossip protocol is used to find the best set of the nodes.

40 Sanket Patel and Deepak Dembla

Algorithm 1: Tree based materialized view creation and maintenance
r: Threshold for number of records that should be kept in materialized view

Inputs
• R: Total records in database
• m: Number of nodes to visit

Output
• S: Set of Materialized views

Begin

1. Arrange R in an ascending order of their key values
2. Select middle record as a root node
3. For all the records in databases available on m
4. If number of records in leaf < r
5. Split the number of records in equal set
6. Else create materialized view for the records which are present in leaf node.
7. Add the materialized view in view set

End

Algorithm 2: For node selection
M: Total number of nodes in network
M: Number of nodes to visit
 J: jump size for randomly selecting nodes
 T: max tuples to be processed per node

Inputs
Q: Query with selection condition
Sink: Node where query is initiated
Output: Query result to Sink (node where query is initiated)

Begin

1. Check number of active nodes
2. If number of nodes = 1
2.1 Execute query on that node
3. Else randomly select the nodes
4. Curr = Sink; Hops = 1;
5. While (Hops < j * m) {
6. If (Hops % j)
7. Visit (Curr);
8. Hops ++;
9. Curr = random adjacent node
10. }
11. Visit (Curr){
12. If (# tuples of Curr) <= t){

An Approach for Selection and Maintenance of Materialized 41

13. Execute Q on all tuples
14. Else
15. Execute Q on t randomly sampled tuples
16. }
17. Return result to Sink
18. Compute Processing time
19. Return this result to Sink

End

Experiment Results and Discussion
The experiment results are carried out on different databases. BMC, Northwind,
Electricity, Web searches and all words databases are used to carry out the
experiments of proposed method. The subset of typical user queries is shown in Table
1. The total cost is calculated on the basis of query processing, maintenance and
storage cost for the three materialized view strategies the all-virtual-views method, the
all-materialized-views method and the proposed materialized-views method.
 Table 1 presents the calculation results, from which following observations can be
stated: The all-virtual-views method requires the highest query processing cost but no
view maintenance and storage costs are incurred. The all-materialized-views method
can provide the best query performance since this method requires the minimum
query processing cost. However, its total maintenance and storage expenses are the
highest. The proposed-materialized-views method requires a lower query processing
cost than the all-materialized-views method, also its total cost is the least.

Table1: Subset of the query

Strategy Query Processing

Cost
Maintenance

Cost
Storage

cost
Total
Cost

All-virtual-views 16230 0 0 16230
All-materialized-views 1026 2689 1135 4850
Proposed-materialized-
views

986 2380 380 3746

 The execution time taken by the proposed materialized view algorithm and
without using materialized view for various databases is shown in Graph 1. The
execution time is given in terms of milliseconds.

42 Sanket Patel and Deepak Dembla

Graph 1: Execution time (ms) versus databases

Conclusion
The selection of views to materialize is one of the most important issues in designing
a data warehouse. So as to achieve the best combination of good query response
where query processing view maintenance cost should be minimized in a given
storage space constraints. The proposed algorithms are found efficient as compared to
other materialized view selection and maintenance strategies. The total cost,
composed of different query patterns and frequencies, were evaluated for three
different view materialization strategies: 1) all-virtual-views method, 2) all
materialized-views method, and 3) proposed materialized-views method. The total
cost evaluated from using the proposed materialized-views method was proved to be
the smallest among the three strategies. Further, an experiment was conducted to
record different execution times of the proposed strategy in the computation of a fixed
number of queries and maintenance processes. Again, the proposed materialized-
views method requires the shortest total processing time.

References

[1] Gorettiv, K.Y., Qing, L. and Ling, F., 2008, “Optimized Design of Materialized
Views in a Real-Life Data Warehousing Environment,” International Journal of
Information Technology, 7(1).

[2] NapsterHomepage, http://www.napster.com,
[3] Kazaa Homepage, 2006, http://www.kazaa.com.
[4] Babcock, B., Chaudhuri, S., and Das, G., 2003, “Dynamic Sample Selection for

Approximate Query Processing,” proc. 22nd ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’03), pp. 539-550.

[5] Gkantsidis, C., Mihail, M., and Saberi, A., 2004, “Random Walks in Peerto-
Peer Networks,” Proc. IEEE INFOCOM ’04.

[6] Benjamin, A., Gautam, D,, Dimitrios, G., and Vana, K., 2007, “Efficient
Approximate Query Processing in Peer-to-Peer Networks,” IEEE Trans on
Knowlwgde and Data Engg., 19(7).

An Approach for Selection and Maintenance of Materialized 43

[7] Shantanu, J., and Christopher, J., 2008, “Materialized Sample Views for
Database Approximation,” IEEE Trans on Knowledge and Data Engg., 20(3).

[8] Olken, F., 1993, “Random Sampling from Databases,” Ph.D dissertation.
[9] Choi, C.H., Yu, J.X., and Gou, G., 2002, “What difference heuristic make:

maintenance cost view selection revisited,” proc. 3rd Int. Conf. on Advances in
Web-Age Information Management, Springer-Verlag., pp.313-350.

[10] Yang, J., Karlapalem, K., and Li, Q., 1997, “Algorithms for materialized view
design in data warehousing environment,” proc. 23rd Int. Conf. on Very Large
Data Bases, pp.136-145.

[11] Gang, G., Jeffery, X.Y., and Hongjun, L., 2006, “A* Search: An Efficient and
Flexible Approach to Materialized View Selection,” IEEE Trans. on Systems,
Man and Cybernetics – Part C: Appl. And Reviews, 36(3).

[12] Bazlur, R.A.N.M., and Islam, M.S., 2009, “An Incremental View
Materialization Approach in ORDBMS,” IEEE Intl. Conf. on Recent Trends in
Information, Telecommunication and Computing

[13] Zhou, L., Ge, X., Wang, L., and Shi, Q., 2009, “Research on Materialized View
Selection Algorithm in Data Warehouse,” IEEE Intl. Conf. on Computer
Science-Technology and Applications.

[14] Qingzhou, Z., Xian, S., and Ziqiang, W., 2009, “An Efficient MA-Based
Materialized Views Selection Algorithm,” IEEE Intl. Conf on Control,
Automation and Systems Engineering.

[15] Harinarayan, V., Rajaraman, A., and Ullman, J., 1996, “Implementing data
cubes efficiently,” Proc. of ACM SIGMOD 1996 International Conference on
Management of Data, Montreal, Canada, pp. 205—216.

[16] Yang, J., Karlapalem, K., and Li, Q., 1997, “A framework for designing
materialized views in data warehousing environment,” Proc. of 17th IEEE
International conference on Distributed Computing Systems, Maryland, U.S.A.

[17] Gupta, H., 1997, “Selection of Views to Materialize in a Data Warehouse,”
Proc. of International Conference on Database Theory, Athens, Greece.

[18] Ziqiang, W., and Dexian, Z., 2005, “Optimal Genetic View Selection
Algorithm Under Space Constraint,” International Journal of Information
Technology, vol. 11, no. 5, pp. 44 – 51.

[19] Aouiche, K., Jouve, P., and Darmont, J., 2006, “Clustering-based materialized
view selection in data warehouses.” In ADBIS’06, volume 4152 of LNCS,
pages 81–95.

