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probabilities obtained when measure of cross-entropy (or relative entropy) is 
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Introduction 

Minimizing the Kullback-Leibler’s [3] cress-entropy (or relative entropy) with respect to a set 

of moment constraints finds its importance in the celebrated Kullback’s minimum cross-

entropy principle. This principle, also known as the minimum directed divergence principle 

[4] is an entropy optimization principle similar to Jayne’s [1] maximum entropy principle. 

Minimum cross-entropy principle more general compared to Jayne’s maximum entropy 

principle, in the sense that minimizing cross-entropy is equivalent to maximizing Shannon 

entropy [5] when the prior is a uniform distribution. 

 

Let  1 2, ,..., nP p p p  are the probabilities obtained by minimizing Kullback-Leibler’s 

measure of cross-entropy  
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     where   1 2, ,..., nQ q q q  is any given probability distribution, subject to the natural 

constraint and moment constraint 
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where  ( )g i  is a positive integral-valued increasing function of  i   for which (0) 0g  , from 

this, Kapur [2] showed that i

i

p

q
 is an increasing, constant, decreasing function of  i  according 

as M is greater than, equal to, less than 0M , where 0M  is defined by 
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In this communication, next section we minimize cross-entropy due to Fermi Dirac’s 

Measure of entropy and we discuss the increasing or decreasing nature of probability 

distribution. 

 

Minimum Cross-Entropy Probability Distribution 

 

Theorem: The probability distribution obtained by minimizing the measure of cross-entropy 

due to Fermi Dirac  
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subject to (2) and (3) is such that each ip  and     1 1i i i ip q q p  always increase with i or 

always decrease with i  or remains equal to unity.  

 

Proof: Minimizing (4) subject to the constraint (2) and (3), we get 
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where   and   are determined by using                             
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(i) If 0  , then 0   and    1 1 1i i i ip q q p    for each i . 

(ii) If 0  ,    1 1i i i ip q q p  increase with i . 

(iii) If 0  ,    1 1i i i ip q q p  decrease with i .  

However, in the last two cases i ip q may sometimes increase and sometimes 

decrease with i . 
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If, 
n

qi
1  , we get the maximum entropy probability distribution and  1i ip p will always 

increase with i or always decrease with i or remain constant with value  1 1n for all i . Now, 
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so that if ik always increase or decrease with i ,then ip always increase or decrease with i . 

 In the general case, 

 

                              
   1 1

i i
i

i i

p q
k

p q


 
                                                         (9)

  

 

(i) If ik and iq both increase with i , ip always increases with i . 

(ii) If both ik and iq decrease with i , ip also decreases with i . 

(iii) If ik increases and iq decreases with i , then ip will increase or decrease with i

according as  1i i ik q q increases or decreases. 
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