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Abstract 
 
The state of dynamic equilibrium of stress waves in a specimen under 
test by SHPB is not automatically achieved due to the effect of loading 
rate and the specimen dimensions. Therefore, a guideline for proper 
SHPB experiments and analytical investigations have been conducted 
to examine the process of wave equilibrium in different material 
specimens. Compressive experiments on different materials with 
SHPB were conducted to determine the effect of length and diameter 
as well as the density of the material on the time required for the stress 
equilibrium to be reached within the specimen. The loading rate is kept 
in all measurements as the loading pulses more like the actual loading 
stress pulse in SHPB to have a better idea of the real response of the 
materials under a constant strain rate. Although, the actual incident 
pulse shaped is not very suitable for a parametric study of the thickness 
effect. 
 
Keywords: SHPB, stress equilibrium, multiple reflection, dimension 
effect. 

  
 

1. Introduction 
The split Hopkinson pressure bar (SHPB) technique (Fig. (1)) is a well-established 
method used for the determination of high strain rate properties of materials. In the 
SHPB test, the sample (a small solid cylinder of the tested material) is sandwiched 
between two long-high strength steel bars. The sample can be compressed by a stress 
pulse generated by impacting the end of one of the steel bars (incident bar) using a 
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steel projectile. The projectile has the same diameter as the steel bars, and a length that 
is appropriate for providing suitable loading pulse duration. 

The stress pulses in the bars are recorded by strain gauges placed in equidistant 
from the sample. The stress-strain properties can be obtained from the amount of the 
stress pulse reflected and transmitted by the sample, assuming that stress equilibrium 
exists throughout the sample. 

When the stress wave travels along the incident bar in a positive direction, it hits 
the first interface between the incident bar and the sample. The difference in 
impedance between the bars and the sample makes the wave partially reflect back in 
the negative direction as a reflected pulse R , while the rest of the wave passes 
through the first interface as a transmitted pulse (from the first interface) at time zero 

0T . The 0T  travels toward the second interface between the sample and the 

transmitter bar and again due to the impedance mismatch, part of 0T  will reflect back 

toward the first face and the rest will transmit into the transmitter bar. 
The time required for the T0  pulse to reach the second face of the sample, or in 

other words, the time required for the pulse to travel between the two faces of the 
sample is called the traverse time tt, which defined as: 

 

sc
tt




 
 

where   is the sample length and sc  is the wave speed in the sample.  

Therefore, after one period of traverse time, the reflection occurs at the second face 
of the sample creating 1R  and 1T . This process continues, so that multiple 
reflections occur within the sample and a succession of reflected waves become 
"trapped" inside the sample propagating back and forth between the two interfaces [1]. 

Theoretically, reflected waves thus "trapped" in this manner will undergo an 
infinite number of reflections between the interfaces; however, at each reflection the 
intensity of the reflected stress will decrease since a portion of the wave is transmitted 
each time. Eventually, the trapped wave will have decayed to negligible amplitude. 
The effect of multiple reflections within the sample is to cause a dispersion of the 
incident wave. Thus, if the incident wave has a sharp rise time before reaching a 
constant maximum stress, the transmitted wave will have a less sharp rise time. These 
multiple reflections cause a non-uniform stress distribution that may lead to inaccurate 
estimates of the initial stress/strain properties of the sample [2]. 

The theory of SHPB analysis is based on the equation RIT   . This equation 
is only true if the forces and therefore the stresses are equal on both sides of the 
sample. This equilibrium condition will not arise immediately as the stress wave is 
incident on a SHPB sample, but occurs after several reflections have taken place inside 
the sample. 
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The stress wave transmitted through s2  is T , and reflected back through s1 is R . 
Where the initial stress in s1 is 11I Z   at the plane AB the following conditions are 
satisfied: 

i. the forces acting on the plane AB acting from s1 and s2  are equal at all times, 
and, 

ii. the particle velocity in plane AB, in the material for s1 and s2  are equal. 
iii. According to (i) we have, assuming I  , R  and T  are taken to be 

compressive, then  

TRI AA  21 )(  , (2) 

I , and R  are associated with waves travelling in opposite directions, therefore, 
(ii) gives 

TRI     (3) 
where   denotes particle speed and subscripts I, R, and T refer to incident, 

reflection, and transmission. In general the stress () is related to density (), sound 
speed (c), and particle speed () by: 

Zc



   . 

The transmitted and reflected stresses can be derived to be; 

 IIT T
ZAZA

ZA
 




2211

212  (4) 

The reflected stress is obtained as: 

 IIR R
ZAZA

ZAZA
 





2211

1122  (5) 

Where T and R are the transmission and reflection coefficients respectively. 
 
 

3. Analysis and Computation 
The principles of SHPB technique are well-documented [6]. The theory of SHPB 

shows that the nominal strain  s , strain rate 
.
 , and nominal stress s  are given by the 

following equations: 

dt
c t

R
b

s 



0

2


  
 (6) 
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bc
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

2. 


  
(7) 
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0I  = incident stress, 

0R = reflected stress at B1,  

1T = transmitted stress at the interface B2 at time t= / cs  which is called the 
traverse time (tt), and, 

1RS = reflected stress at B2 at time tt. 

If the incident stress wave has a finite duration, then the stress I  may be time 
dependent. 

At t = 1 traverse time, the stress is transmitted into the sample. It is important to 
note at this stage that if 0I  is compressive (+ve), then according to equation (4) 1T  

will also be compressive (+ve), while from equation (5) R0  may be compressive (+ve) 
or tensile (-ve) depending on the mechanical impedance Zs of the sample and its cross-
sectional area As . 

 
Equations 4 and 5 can be re-written for the SHPB as; 
 

I
bbss

sb
T ZAZA

ZA





2
 (8) 

 

I
bbss

bbss
R ZAZA

ZAZA





  (9) 

 
and the transmission and reflection coefficients can be written at the interface B1 

as: 

T1=
bbss

sb

ZAZA

ZA


2

  (10) 

 

R1=
bbss

bbss

ZAZA

ZAZA




 (11) 

 
At the interface B2 the reflection will occur inside the sample, so the coefficient is 

denoted as R2 and the transmission coefficient as T2  (where the stress wave has 
transmitted partially into the transmitter bar). 

 

12 R
ZAZA

ZAZA
R

bbss

ssbb 




 (12) 

 

bbss

bs

ZAZA

ZA
T




2
2

 
 (13) 



Dimension Effect on Dynamic Stress Equilibrium in SHPB Tests 21 
 

 

For a compressive incident stress, the transmitted stress will always be 
compressive; while the reflected stress can be tensile or compressive. Usually 

ssbb ZAZA   making R1 negative and R2 positive [2]. 

The build-up of the reflected and the transmitted pulses in the pressure bars caused 
by the multiple reflections between the interfaces, and the build up of the transmitted 
and reflected stress pulses in the SHPB sample can be equated as; 

At 0 traverse time 010 ITS T    and 010 IR R   , and at 1 traverse time 

021021 ITST TTT    , 011021 IRSRS TRR    and 111 IR R   . Where at the 

second traverse time the stress are; 1212 IT TT   , 

2111
2
121122 IIIRSRS TTRTR    and 0211212 IIR TTRR    and so on. 

After N of traverse times the transmitted and reflected stresses equal ; 
2,)1(21)2(

2
1   NforTTR NINTTN   and 

1,)( )1(1   NforR NTINRN   respectively. 

In standard SHPB theory, the transmitted stress  T  is proportional to the actual 
stress of the sample. This cannot be correct unless stress equilibrium has been 
achieved. Stress equilibrium occurs when the equation TRI    is satisfied. So, 

the equilibrium condition can be achieved when the ratio 1
 RI

T




 is satisfied. 

 
 

4. Results and Discussion 
Understanding the way the SHPB system operates helps to make some predictions 
about the nature of the computed results, such as: 

 
1) The transmitted pulse always has the same sign as the incident pulse as can be seen 

from equation (8) while from equation (9), the reflected pulse does not always 
have the same sign, but rather depends on the value of the cross-sectional area and 
the impedance of the sample compared with those of the bars. If bbss ZAZA   , the 

reflected pulse will be of opposite sign to the incident pulse. 
2) After the stress pulse passes through the sample the multiple reflections inside the 

sample take a long time to decay, hence equilibrium no longer exists between the 
bar and the sample until the time tends to infinity. So the equilibrium ratio 

)(/ RIT    will oscillate with a period of 2tt -the time required for the pulse 
to return to the interface. The above pulses are shown in Fig. (4) for HDPE, 
Nylatron, CFC and Aluminium samples with length/diameter ratio of 4/8. It can 
easily be noticed that the more dense material and higher sound speed (higher 
impedance samples), the shorter time required for the equilibrium to be achieved.  

3) Because of the time required for the pulse to propagate through the sample, the 
transmitted pulse starts one traverse time (tt) after the reflected pulse. This delay 
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can be compensated experimentally by appropriate positioning of the strain 
gauges, but would be inconvenient for samples of different thicknesses. 

4) In general, the smaller the cross-sectional area of the sample, the greater the 
reflected pulse and the smaller the transmitted pulse and longer time is required 
for the equilibrium as shown in Fig. (5).  

5) The trend for all the computed results is that the normalised transmitted pulse tends 
to 1 and the reflected pulse vanishes to zero [1]. The time this process takes 
depends on the cross-sectional area and the mechanical impedance of the sample 
and bars. 

6) The results in Fig. (6) shows that when the length of the sample increase the time 
required for the equilibrium increases as well. while when the diameter increase 
the time decreases. 

7) From the previous researches, the ideal length to diameter ratio of the sample is 
half. This ratio was found to avoid the barrelling effect when the length is big and 
to avoid the friction effect at thin samples. 

8) Due to Poisson’s ratio, the combinations of L/D variation have been examined and 
shown in Fig. (5). This means when the length is changed the diameter has to be 
changed as well to keep the same L/D ratio with same value. 
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Fig. 5: Diameter versus time for complete equilibrium for HDPE,  

Nylatron, carbon Fibreglass, and Aluminium. 
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Fig. 6: Length-time for HDPE, Naylatron and CFC. 
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Fig. 7: Length and Diameter versus time for HDPE. 
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Fig. 8: Length and Diameter versus time for nylatron. 
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Fig. 9: Length and Diameter for CFC. 

 
 

5. Conclusions 
The dynamic stress equilibrium in materials under SHPB testing has been investigated 
using the multiple reflections of the stress pulse inside the specimen within the elastic 
limit of the materials. It was illustrated that the equilibrium condition, which is one of 
the fundamental requirements in materials dynamic property testing, is not satisfied 
automatically when a SHPB is used to determine the dynamic response of the material 
under test. 

To ensure studying the effect of dimensions on the dynamic equilibrium, the 
loading rate must be examined and kept the same [7]. Also, very high loading rate may 
cause localized failure in the specimen near the front face when impacted by the stress 
pulse from the incident bar, therefore in the present work the loading rate, which 
related to the incident pulse is kept the same in all measurements. 

A reduction in the specimen thickness may lead to achieving early dynamic stress 
equilibrium especially in soft materials. However, the thickness cannot be reduced 
indefinitely, and the friction effects will be more pronounced in thin specimens. 

The large difference between the initial front and back-surface stresses due to the 
large thickness causes a severe non-equilibrium in the specimen. It is thus, necessary to 
quantitatively understand the effect of the specimen dimensions on the dynamic stress 
equilibrium in order to properly design SHPB experiments, so valid results for the 
tested material can be obtained. 
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In an experiment, the peak stress of the specimen at a certain constant strain rate is 
part of the experimental goal and is not variable if the experiment is properly designed; 
therefore, it is important to decrease the amplitude of the initial stress in the front-
surface stress pulse to facilitate early equilibrium in the specimen. Thus, in this work, 
the incident pulse generated with a suitable rise time to achieve the equilibrium in a 
shorter time.  
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