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Abstract 
 

The purpose of the present paper is to introduce the classes ( )T    of 
normalized analytic and univalent functions in the open unit disc 

 1::  zzU . 
By using the properties of analytic functions and the technique of 

inequality in discussion,the paper is to derive the Fekete-Szego problem of the 
class ( )T   . 
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Introduction and Definition 
Let   denote the class of functions of the form: 
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(1.1) 

 
which are analytic and univalent in the open unit disc  1::  zzU (for details, see 
[1,2,3]).Let ( )M   denote  -convex functions in U  defined as follows (see [4]): 
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 A classical theorem of Fekete and Szego[4] states that for ( )f z   given by 
(1.1), 
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 This inequality is sharp in the sense that for each   there exists a function in   
such that equality holds. Pfluger [5,6] has considered the problem when   is 
complex. In the case of C , *S ,and K , the subclasses of convex, starlike and close-to-
convex functions,respectively,the above inequality can be improved [7,8]. 
 In this paper,we define a subclass of  -convex functions in U  and reseach the 
Fekete-Szego problem of the class. 
 
Definition 1.1: A function ( )f z   given by (1.1) is said to be in the class ( )T    if 

the following condition is satisfied：
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Main Results 
To prove our main results, we need the following Lemma. 
Lemma 2.1: [9] Let ( )p z  be analytic in U  and satisfy  Re ( ) 0p z   for z U , with 

2
1 2( ) 1p z p z p z   . Then 
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The inequality (2.1) was first proved by Caratheodory [9](also,see Duren [1, p. 41]) 
and the inequality (2.2) can be found in [10, p.166]. 
 With the help of Lemma 2.1, we now derive 
 
Theorem 2.1: Let ( ) ( )f z T    and be given by (11). Then for complex number  , 
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where 
 2( ) 8 3 4 (1 2 )k          . 
 
 For each  , there is a function in ( )T    such that equality holds. 
 
Proof: From (1.2), we can write the argument inequalities equivalently as follow: 
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where ( )p z  is given by Lemma 2.1. Equating coefficents, we obtain 
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 Then we have 
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 Hence (2.4) and Lemma 2.1 give 
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 Therefore, by using 1 2p  , we have 
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where 
 2( ) 8 3 4 (1 2 )k          . 
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 Equality is attained for functions in ( )T   , respectively, given by 
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Remark 2.1: It follows at once from (2.3) that 2 2 / (1 )a    . 
 Next, we consider the real number   as follows. 
 
Theorem 2.2: Let ( ) ( )f z T    and be given by (11). Then for real number  , 
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Proof: We consider two cases. At first, we suppose that  2 8 3 / 4(1 2 )       . 
 Then (2.3) and Lemma 2.1 give 
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 So, by using the fact that 1 2p  , we obtain 
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 Equality is attained by choosing 1 2 2p p   and 1 20, 2p p  ,respectively, in 
(2.3). 
 Next, we suppose that  2 8 3 / 4(1 2 )       . In this case, it follows again 
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from (2.3) and Lemma 2.1 that 

  2 2
212 2

3 2 12

4 (1 2 ) ( 8 3)
2

2(1 2 ) 2 4(1 2 )(1 )
p

a a p
    

  

     
     

    
 

  2 2 2
2

12

4 (1 2 ) ( 8 3) (1 )
1 2 4(1 2 )(1 )

p
      

  

     
 

  
 

 
and so, as in the first case, we have 
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 The results are sharp by choosing 1 20, 2p p  and 1 22 , 2p i p   ,respectively, 
in (2.3). 
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