On the Fekete-Szego Problem for a Subclass of *λ* - Convex Functions

Li Xiaofei

College of Technology and Engineering, Yangtze University, Jingzhou-434020, China

Abstract

The purpose of the present paper is to introduce the classes $T^{\lambda}(\alpha)$ of normalized analytic and univalent functions in the open unit disc $U := \{z : |z| < 1\}.$

By using the properties of analytic functions and the technique of inequality in discussion, the paper is to derive the Fekete-Szego problem of the class $T^{\lambda}(\alpha)$.

Keywords: Analytic and Univalent; λ -convex functions; Fekete-Szego problem

2000 MR Subject Classification: 30C45

Introduction and Definition

Let Ω denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic and univalent in the open unit disc $U := \{z : |z| < 1\}$ (for details, see [1,2,3]).Let $M(\lambda)$ denote λ -convex functions in U defined as follows (see [4]):

$$M(\lambda) = \left\{ f(z) \in \Omega : \operatorname{Re}\left((1-\lambda) \frac{zf'(z)}{f(z)} + \lambda(1+\frac{zf''(z)}{f'(z)}) \right) > 0, \lambda \ge 0 \right\}.$$

A classical theorem of Fekete and Szego[4] states that for $f(z) \in \Omega$ given by (1.1),

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} 3-4\mu, \mu \leq 0\\ 1+2e^{-\frac{2\mu}{1-\mu}}, 0 \leq \mu \leq 1\\ 4\mu-3, \mu \geq 1 \end{cases}$$

This inequality is sharp in the sense that for each μ there exists a function in Ω such that equality holds. Pfluger [5,6] has considered the problem when μ is complex. In the case of C, S^* , and K, the subclasses of convex, starlike and close-to-convex functions, respectively, the above inequality can be improved [7,8].

In this paper, we define a subclass of λ -convex functions in U and research the Fekete-Szego problem of the class.

Definition 1.1: A function $f(z) \in \Omega$ given by (1.1) is said to be in the class $T^{\lambda}(\alpha)$ if the following condition is satisfied :

$$\left| \arg\left(\left(1 - \lambda\right) \frac{zf'(z)}{f(z)} + \lambda \left(1 + \frac{zf''(z)}{f'(z)}\right) \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1, \lambda \ge 0, z \in U)$$
(1.2)

Main Results

To prove our main results, we need the following Lemma.

Lemma 2.1: [9] Let p(z) be analytic in U and satisfy $\operatorname{Re} \{ p(z) \} > 0$ for $z \in U$, with $p(z) = 1 + p_1 z + p_2 z^2 + .$ Then

$$|p_n| \le 2 \quad (n \ge 1)$$
(2.1)

and

$$\left| p_2 - \frac{p_1^2}{2} \right| \le 2 - \frac{\left| p_1 \right|^2}{2}.$$
(2.2)

The inequality (2.1) was first proved by Caratheodory [9](also, see Duren [1, p. 41]) and the inequality (2.2) can be found in [10, p.166].

With the help of Lemma 2.1, we now derive

Theorem 2.1: Let $f(z) \in T^{\lambda}(\alpha)$ and be given by (11). Then for complex number μ ,

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\alpha}{1+2\lambda}, k(\lambda) \leq \frac{\left(1+\lambda\right)^{2}}{\alpha} \\ \frac{\left|\lambda^{2}+8\lambda+3-4\mu(1+2\lambda)\right|\alpha^{2}}{\left(1+2\lambda\right)\left(1+\lambda\right)^{2}}, k(\lambda) \geq \frac{\left(1+\lambda\right)^{2}}{\alpha} \end{cases}$$

where

$$k(\lambda) = \left|\lambda^2 + 8\lambda + 3 - 4\mu(1 + 2\lambda)\right|.$$

For each μ , there is a function in $T^{\lambda}(\alpha)$ such that equality holds.

Proof: From (1.2), we can write the argument inequalities equivalently as follow:

$$\left(1-\lambda\right)\frac{zf'(z)}{f(z)}+\lambda\left(1+\frac{zf''(z)}{f'(z)}\right)=\left[p(z)\right]^{\alpha}$$

where p(z) is given by Lemma 2.1. Equating coefficients, we obtain

$$a_2 = \frac{\alpha p_1}{1 + \lambda}$$

and

$$a_{3} = \frac{1}{4(1+2\lambda)} \left(\alpha(\alpha-1)p_{1}^{2} + 2\alpha p_{2} + \frac{2(1+3\lambda)\alpha^{2}p_{1}^{2}}{(1+\lambda)^{2}} \right)$$
(2.3)

Then we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\alpha}{2(1+2\lambda)} \left(p_{2}-\frac{p_{1}^{2}}{2}\right) + \frac{\left(\lambda^{2}+8\lambda+3-4\mu(1+2\lambda)\right)\alpha^{2}p_{1}^{2}}{4(1+2\lambda)(1+\lambda)^{2}}$$
(2.4)

Hence (2.4) and Lemma 2.1 give

$$\begin{aligned} \left| a_{3} - \mu a_{2}^{2} \right| &\leq \frac{\alpha}{2(1+2\lambda)} \left(2 - \frac{\left| p_{1} \right|^{2}}{2} \right) + \frac{\left| \lambda^{2} + 8\lambda + 3 - 4\mu(1+2\lambda) \right|}{4(1+2\lambda)(1+\lambda)^{2}} \alpha^{2} \left| p_{1} \right|^{2} \\ &\leq \frac{\alpha}{1+2\lambda} + \frac{\left\{ \left| \lambda^{2} + 8\lambda + 3 - 4\mu(1+2\lambda) \right| \alpha^{2} - (1+\lambda)^{2} \alpha \right\} \left| p_{1} \right|^{2}}{4(1+2\lambda)(1+\lambda)^{2}} \end{aligned}$$

Therefore, by using $|p_1| \le 2$, we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\alpha}{1+2\lambda}, k(\lambda) \leq \frac{\left(1+\lambda\right)^{2}}{\alpha} \\ \frac{\left|\lambda^{2}+8\lambda+3-4\mu(1+2\lambda)\right|\alpha^{2}}{\left(1+2\lambda\right)\left(1+\lambda\right)^{2}}, k(\lambda) \geq \frac{\left(1+\lambda\right)^{2}}{\alpha} \end{cases}$$

where

$$k(\lambda) = \left| \lambda^2 + 8\lambda + 3 - 4\mu(1 + 2\lambda) \right|.$$

Equality is attained for functions in $T^{\lambda}(\alpha)$, respectively, given by

$$\left(1-\lambda\right)\frac{zf'(z)}{f(z)} + \lambda\left(1+\frac{zf''(z)}{f'(z)}\right) = \left(\frac{1+z^2}{1-z^2}\right)^{\alpha}$$
(2.5)

and

$$\left(1-\lambda\right)\frac{zf'(z)}{f(z)} + \lambda\left(1+\frac{zf''(z)}{f'(z)}\right) = \left(\frac{1+z}{1-z}\right)^{\alpha}$$

$$(2.6)$$

Remark 2.1: It follows at once from (2.3) that $|a_2| \le 2\alpha / (1+\lambda)$.

Next, we consider the real number μ as follows.

Theorem 2.2: Let $f(z) \in T^{\lambda}(\alpha)$ and be given by (11). Then for real number μ ,

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\alpha^{2} \left(\lambda^{2}+8\lambda+3-4\mu(1+2\lambda)\right)-(1+\lambda)^{2}}{(1+2\lambda)(1+\lambda)^{2}}, \mu \leq \frac{\alpha \left(\lambda^{2}+8\lambda+3\right)-(1+\lambda)^{2}}{4\alpha(1+2\lambda)}\\ \frac{\alpha}{1+2\lambda}, \frac{\alpha \left(\lambda^{2}+8\lambda+3\right)-(1+\lambda)^{2}}{4\alpha(1+2\lambda)} \leq \mu \leq \frac{\alpha (\lambda^{2}+8\lambda+3)+(1+\lambda)^{2}}{4\alpha(1+2\lambda)}\\ \frac{\alpha^{2} \left(4\mu(1+2\lambda)-(\lambda^{2}+8\lambda+3)\right)}{(1+2\lambda)(1+\lambda)^{2}}, \mu \geq \frac{\alpha \left(\lambda^{2}+8\lambda+3\right)+(1+\lambda)^{2}}{4\alpha(1+2\lambda)} \end{cases}$$

Proof: We consider two cases. At first, we suppose that $\mu \leq (\lambda^2 + 8\lambda + 3)/4(1+2\lambda)$.

Then (2.3) and Lemma 2.1 give

$$\begin{aligned} \left| a_{3} - \mu a_{2}^{2} \right| &\leq \frac{\alpha}{2(1+2\lambda)} \left(2 - \frac{\left| p_{1} \right|^{2}}{2} \right) + \frac{\left(\lambda^{2} + 8\lambda + 3 - 4\mu(1+2\lambda) \right)}{4(1+2\lambda)(1+\lambda)^{2}} \alpha^{2} \left| p_{1} \right|^{2} \\ &\leq \frac{\alpha}{1+2\lambda} + \frac{\left(\lambda^{2} + 8\lambda + 3 - 4\mu(1+2\lambda) \right) \alpha^{2} - (1+\lambda)^{2} \alpha}{4(1+2\lambda)(1+\lambda)^{2}} \left| p_{1} \right|^{2} \end{aligned}$$

So, by using the fact that $|p_1| \le 2$, we obtain

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{\alpha}{1+2\lambda}, \frac{\alpha(\lambda^{2}+8\lambda+3)-(1+\lambda)^{2}}{4\alpha(1+2\lambda)} \leq \mu \leq \frac{\lambda^{2}+8\lambda+3}{4(1+2\lambda)} \\ \frac{\alpha^{2}(\lambda^{2}+8\lambda+3-4\mu(1+2\lambda))-(1+\lambda)^{2}}{(1+2\lambda)(1+\lambda)^{2}}, \mu \leq \frac{\alpha(\lambda^{2}+8\lambda+3)-(1+\lambda)^{2}}{4\alpha(1+2\lambda)} \end{cases}$$

Equality is attained by choosing $p_1 = p_2 = 2$ and $p_1 = 0, p_2 = 2$, respectively, in (2.3).

Next, we suppose that $\mu \ge (\lambda^2 + 8\lambda + 3)/4(1+2\lambda)$. In this case, it follows again

from (2.3) and Lemma 2.1 that

$$\begin{aligned} \left| a_{3} - \mu a_{2}^{2} \right| &\leq \frac{\alpha}{2(1+2\lambda)} \left(2 - \frac{\left| p_{1} \right|^{2}}{2} \right) + \frac{\left(4\mu(1+2\lambda) - (\lambda^{2}+8\lambda+3) \right)}{4(1+2\lambda)(1+\lambda)^{2}} \alpha^{2} \left| p_{1} \right|^{2} \\ &\leq \frac{\alpha}{1+2\lambda} + \frac{\left(4\mu(1+2\lambda) - (\lambda^{2}+8\lambda+3) \right)\alpha^{2} - \alpha(1+\lambda)^{2}}{4(1+2\lambda)(1+\lambda)^{2}} \left| p_{1} \right|^{2} \end{aligned}$$

and so, as in the first case, we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\alpha}{1+2\lambda}, \frac{\lambda^{2}+8\lambda+3}{4(1+2\lambda)} \leq \mu \leq \frac{\alpha(\lambda^{2}+8\lambda+3)+(1+\lambda)^{2}}{4\alpha(1+2\lambda)}\\ \frac{\alpha^{2}\left(4\mu(1+2\lambda)-(\lambda^{2}+8\lambda+3)\right)}{\left(1+2\lambda\right)\left(1+\lambda\right)^{2}}, \mu \geq \frac{\alpha\left(\lambda^{2}+8\lambda+3\right)+\left(1+\lambda\right)^{2}}{4\alpha(1+2\lambda)} \end{cases}$$

The results are sharp by choosing $p_1 = 0$, $p_2 = 2$ and $p_1 = 2i$, $p_2 = -2$, respectively, in (2.3).

References

- P L Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissens chaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [2] D Breaz. N Breaz.H M Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett. 22 (2009) 41–44.
- [3] H M Srivastava, S S Eker, Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Lett. 21 (2008) 394–399.
- [4] Fekete M.Szegö G,Eine Bermerkung uber ungeraade schlichte funktionen [J].J. London Math .Soc,8(1933)85-89.
- [5] A Pfluger, The Fekete-Szego inequality for complex parameters, Complex Variables Theory Appl, 7(1986) ,149-160.
- [6] A Pfluger, on the functional $|a_3 \lambda a_2^2|$ in the class *S*, Complex Variables Theory Appl, 10(1988), 83-95.
- [7] F R Keogh. E P Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc, 20(1969), 8-12.
- [8] W. Koepf, On the Fekete-Szeg\"o problem for close-tO-convex functions, Proc. Amer.Math. Soc, 101 (1987), 89-95.
- [9] C Caratheodory, Uber den ariabilitatsbbereich der fourierschen konstanten von positiven harmonischen funktionen, Rend. Circ. Math. Palermo, 32(1911), 193-217.
- [10] Ch Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.

Li Xiaofei

18