Harmonic Mean Labeling for Some Special Graphs

¹S.S. Sandhya and ²S. Somasundaram

Department of Mathematics, Sree Ayyappa College for Women Chunkankadai; Kanyakumari-629807, India. Email: sssandhya2009@gmail.com Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627012, TamilNadu, India. Email: somutvl@gmail.com

ABSTRACT

A graph G = (V, E) with p vertices and q edges is said to be a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q+1 in such a way that when each edge e =uv is labeled with $f(e = uv) = \left[\frac{2f(u)f(v)}{f(u) + f(v)}\right]$ (or) $\left\lfloor \frac{2f(u)f(v)}{f(u) + f(v)} \right\rfloor$, then the edge labels are distinct. In this case f is called Harmonic mean labeling of G.

In this paper we prove the Harmonic mean labeling behavior for some special graphs.

Keywords: Graph, Harmonic mean graph, path, comb, kite, Ladder, Crown.

1. Introduction

By a graph, we mean a finite undirected graph without loops or multiple edges.

The vertex set is denoted by V(G) and the edge set is denoted by E(G). A cycle of length n is C_n and a path of length n is denoted by P_n . For all other standard terminology and notations we follow Harary [1].

S. Somasundaram and R.Ponraj introduced mean labeling of graphs in [2]. We introduce Harmonic mean labeling of graphs in [3] and studied their

behavior in [4], [5] and [6]. In this paper, we investigate Harmonic mean labeling for some special graphs.

The definitions and other informations which are useful for the present investigation are given below:

Definition 1.1: A Graph G with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2...q+1 in such a way that when each edge e = uv is labeled with f $(e = uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right](or) \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the edge labels are distinct. In this case f is called a Harmonic mean labeling of G.

In this case I is called a framome mean labeling of O.

Definition 1.2: An (m, n) kite graph consists of cycle of length m with n edges path attached to one vertex of a cycle.

Definition 1.3: Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

Definition 1.4: The product graph $P_m \times P_n$ is called a planar grid and $P_2 \times P_n$ is a called a ladder.

Definition 1.5: The corona of two graphs G_1 and G_2 is the graph $G = G_1$ o G_2 formed by one copy of G_1 and $|V(G_1)|$ copies of G_2 where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 .

Definition 1.6: The graph $P_m AK_{1,n}$ is obtained by attaching $K_{1,n}$ to each vertex of P_m .

We shall make frequent reference to the following results

Theorem 1.7 [3]: Any path is a Harmonic mean graph.

Theorem 1.8 [3]: Any cycle is a Harmonic mean graph.

Theorem 1.9 [3]: Combs are Harmonic mean graphs.

Theorem 1.10 [3]: Ladders are Harmonic mean graphs.

2. Main Results

Theorem 2.1: An (m, n) kite graph G is a Harmonic mean graph.

Proof: Let $u_1 u_2 u_3 \dots u_m u_1$ be the given cycle of length m and $v_1 v_2 \dots v_n$ be the given path of length n. Define a function $f : V(G) \rightarrow \{1, 2, \dots, q+1\}$ by $f(u_i) = i, 1 \le i \le m, f(v_i) = n+i, 1 \le i \le n$.

Then the edge labels of the cycle are $f(u_1u_m) = 1$, $f(u_iu_{i+1}) = i+1$, $1 \le i \le m$ and the edge labels of the path are $\{m+1, m+2...m+n\}$ Hence the kite graph is a Harmonic mean graph

Hence the kite graph is a Harmonic mean graph

Example 2.2: A Harmonic mean labeling of (5, 6) kite graph is show below.

Figure: 1

Next we investigate special type of trees generated from a path

Theorem 2.3: Let G be a graph obtained by joining a pendent vertex with a vertex of degree two of a comb graph. Then G is a Harmonic mean graph.

Proof: Comb is a graph with $V(G) = \{v_1 \ v_2.....v_n, u_1, u_2.....u_n\}$. Let us take P_n as $v_1 \ v_2....v_n$ and join a vertex u_i to $v_i \ 1 \le i \le n$. Let G be a graph obtained by joining a pendant vertex w to v_n . Define a function $f : V(G) \rightarrow \{1, 2...q+1\}$ by $f(v_i) = 2i, \ 1 \le i \le n, \ f(u_i) = 2i-1, \ 1 \le i \le n, \ f(w) = 2n+1$ The label of the edge u_iv_i is $2i, \ 1 \le i \le n$. The label of the edge v_iv_{i+1} is $2i-1, \ 1 \le i \le n$. The label of the edge $v_n w$ is 2n.

This gives a Harmonic mean labeling for G.

Example 2.4: Harmonic mean labeling of G with 11vertices and 10 edges is given below:

Figure: 2

In the similar manner, we can see the Harmonic mean labeling of G obtained by joining a pendant vertex with a vertex of degree two on both ends of a comb graph. Harmonic mean labeling G with 10 vertices 9 edges is shown below:

Now we have

Theorem 2.5: Let A be the collection of Paths P_n^i where n is odd. $P_n^i = u_1^i u_2^i \dots u_n^i$, $(1 \le i \le m)$. Let G be the graph obtained from A with $V(G) = \bigcup_{i=1}^n V(P_n^i)$ and $E(G) = \bigcup_{i=1}^n E(P_n^i) \cup (u_{\frac{n+1}{2}}^i u_{\frac{n+1}{2}}^{i+1}, 1 \le i \le m$.

1

Then G is a Harmonic Mean graph

Obviously f is a Harmonic mean labeling of G.

Examples 2.6: A Harmonic mean labeling of G with m = 5 and n = 5 is given below:

Now we prove the following

Theorem 2.7: Let P_n be the path and G be the graph obtained from P_n by attaching C_3 in both the end edges of P_n . Then G is a Harmonic mean graph.

Proof: Let P_n the path $u_1u_2...,u_n$ and $v_1u_1u_2$, $v_2u_{n-1}u_n$ be the triangles at the end.

Define a function $f : V(G) \rightarrow \{1,2...,q+1\}$ by $f(u_i) = i+1, 1 \le i \le n-1, f(u_n) = n+3, f(v_1) = 1, f(v_2) = n+2$

The edge labels are given below: $f(u_1v_1) = 1$, $f(u_2v_1) = 2$. $f(u_{n-1}v_2) = n+1$, $f(u_nv_2) = n+3$ $f(u_{n-1}u_n) = n+2$

Obviously G is a Harmonic mean graph.

Example 2.8: A Harmonic mean labeling of G obtained from P_8 is given below

Next we investigate

Theorem 2.9: Let G be a graph obtained by attaching each vertex of P_n to the central vertex of $K_{1,2}$. Then G admits a Harmonic mean labeling.

Proof: Let P_n be the path $u_1u_2....u_n$ and a_i , b_i the vertices of $K_{1,2}$ which are attached to vertex u_i of P_n . The graph contains 3n vertices and 3n-1 edges.

Define a function $f : V(G) \rightarrow \{1, 2, ..., q+1\}$ by $f(u_i) = 3i-1, 1 \le i \le n, f(a_i) = 3i-2, 1 \le i \le n,$ $f(b_i) = 3i, 1 \le i \le n, f(u_i \ u_{i+1}) = 3i, 1 \le i \le n.$ $f(a_i \ u_i) = 3i-2, 1 \le i \le n, f(b_i \ u_i) = 3i, 1 \le i \le n.$

Hence G admits a Harmonic mean labeling.

Example 2.10: A Harmonic mean labeling of $P_4 AK_{1,2}$ is shown in figure 6.

Figure: 6

The same argument as in Theorem 2.9 gives the following

Theorem 2.11: Let G be a graph obtained by attaching P_n to the central vertex of $K_{1,3}$. Then G admits a Harmonic mean labeling

Proof: Let P_n be the path $u_1u_2...,u_n$ and a_i , b_i , c_i be the vertices of K_1 , $_3$ which are attached to the vertex u_i of P_n .

The graph G has 4n vertices ad 4n-1 edges.

Define $f : V(G) \rightarrow \{1, 2, ..., q+1\}$ by $f(u_i) = 4i-1, 1 \le i \le n.$ $f(a_i) = 4i-3, 1 \le i \le n, f(b_i) = 4i-2, 1 \le i \le n, f(c_i) = 4i-1, 1 \le i \le n.$ Edges are labeled with $f(u_iu_{i+1}) = 4i, 1 \le i \le n.$ $f(u_ia_i) = 4i-3, 1 \le i \le n.$ $f(u_ib_i) = 4i-2, 1 \le i \le n, f(u_i c_i) = 4i-1, 1 \le i \le n.$ Hence G admits a Harmonic mean labeling

Example 2.12: A Harmonic mean labeling $P_3 A K_{1,3}$ is displayed below.

Figure: 7

Now we prove the Harmonic mean labeling of Corona with Ladder

Theorem 2.12 : $L_n \land K_1$ is a Harmonic mean graph.

Proof: Let L_n be a Ladder with $V(L_n) = \{a_i, b_i \mid 1 \le i \le n\}$ and $E(L_n) = \{a_i b_i: 1 \le i \le n\} \cup \{a_i \ a_{i+1}: 1 \le i \le n-1\} \ \cup \ \{b_i \ b_{i+1}: 1 \le i \le n-1\}$

Let c_i be the pendant vertex adjacent to a_i and d_i be the pendent vertex adjacent to b_i.

Define a function $f : V(L_n A K_1) \rightarrow \{1, 2, \dots, q+1\}$ by $f(a_i) = 5i-3, 1 \le i \le n,$ $f(b_i) = 5i-2, 1 \le i \le n,$ $f(c_i) = 5i-4, \ 1 \le i \le n,$ $f(d_i) = 5i-1, 1 \le i \le n-1.$ Edges labels are given below

 $f(a_i \ b_i) = 5i-3, \ 1 \le i \le n$ $f(b_i \ d_i) = 5i-1, \ 1 \le i \le n.$ $f(a_i \ c_i) \ = \ 5i\text{-}4, \ 1 \leq \ i \ \leq \ n.$ $f(a_i \ a_{i+1}) = 5i-1, \ 1 \le i \le n-1$ $f(b_i \ b_{i+1}) \ = \ 5i, \ 1 \le \ i \ \le \ n{-}1$

Hence L_nAK_1 is a harmonic mean graph.

Example 2.13: The Harmonic Mean labeling of $L_4 A K_1$, is given below

Figure: 8

Remark 2.14[4]: The crown $C_n A K_l$ is a Harmonic mean graph for all $n \ge 3$. Now we prove

Theorem 2.15: $C_n \land \overline{K_2}$ is a Harmonic mean graph for all $n \ge 3$.

Proof: Let C_n be the cycle u_1 u_2 u_nu_1 and $v_{i,}w_i$ be the pendant vertices adjacent to u_i $1 \le i \le n$.

Define a function $f : V(C_n \land \overline{\mathbf{K}}_2) \rightarrow \{1, 2...q+1\}$ by

 $f(u_i) \ = \ 3i\text{-}1, \ 1 \leq i \leq \ n, \ f(v_i) \ = \ 3i\text{-}2, \ 1 \leq \ i \leq \ n, \ f(w_i) \ = \ 3i, \ 1 \leq \ i \ \leq n.$

Then the edge labels are all distinct. Hence $C_n \wedge \overline{K}_2$ is a Harmonic mean graph.

Example 2.15: Here we display the Harmonic mean labeling of $C_5 \mathbf{A} \overline{K}_2$

Remark 2.16: Harmonic Mean labeling of $C_4 A \overline{K}_3$ is shown in the following figure.

Figure: 10

References

- [1] Harary.F., 1988, Graph theory, Narosa Publishing House, New Delhi.
- [2] Somasundaram.S., and Ponraj R., 2003, Mean labeling of graphs National Academy of Science Letters vol.26, p.210-213
- [3] Somasundaram S., Ponraj R., and Sandhya S.S., Harmonic mean labeling of graphs communicated.
- [4] Sandhya S.S., Somasundaram S., and Ponraj R., Some Results on Harmonic Mean Graphs, International journal of Contemporary Mathematical Sciences 7(4) (2012), 197-208.
- [5] Sandhya S.S., Somasundaram S., and Ponraj R., Some More Results on Harmonic Mean Graphs Journal of Mathematics Research 4(1) (2012) 21-29.
- [6] Sandhya S.S., Somasundaram S., and Ponraj R., Harmonic Mean Labeling of Some Cycle Related Graphs, International Journal of Mathematics Analysis vol.6, 2012. No.40 1997-2005.