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Abstract

The aim of this paper is to investigate the stability problem of the
Trigonometric functional equations

f(2x) — f(2y) =2g(x+ ¥)f(x —¥)
g(2y)—gx)=2f(x+¥)f(x—¥)
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Introduction
In 1940, S.M.Ulam raised the following stability problem [16]:
Let # be a mapping from group G, to a metric group G with metric d(.,.) such that

d(f(xy).fIf(V))= &

Then does there exists a group homomorphism L and &, > 0 such that
d(f(x),L(x))< 6.

for all xe G ?

This problem was solved affirmatively by Hyers[10] under the assumption that is
a Banach space. In 1949 — 1950, this result was generalized by the authors Bourgin[7]
and Aoki[1] and since then stability problems of many other functional equations
have been investigated[8, 10-12]. In 1990, Szekelyhidi[15] has developed his idea of
using invariant subspaces of functions defined on a group or semi group in connection
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with stability questions for the sine and cosine functional equation.
Baker et.al [4] and Bourgin [6] introduced that if f satisfies the stability inequality
|E,(f) — E,(f)] <&, then either f is bounded or E,{(f) =E.{(f). This is now

frequently referred to as super stability.
The super stability of the cosine functional equation
flx+y)+flx—y) = 2f(x)f(¥)

and the sine functional equation

o (3 5]

are investigated by Baker [5] and Cholewa [8] respectively. The stability of the
generalized cosine functional equation has been researched in many papers [2, 3, 9,
11-13] and Kim [14] investigated the stability of the generalized sine functional
equation.

The aim of this paper is to study the stability problem of the Trigonometric
functional equations

f(2x)— f(2y) =2g(x + y)f(x—v) (Ty)
g(2y) —g(2x) = 2f(x + ¥)f (x —y) (T2)

In this paper, let (G,+) be an abelian group, C the field of complex numbers, R
the field of real numbers and N the natural numbers. We may assume that f and g are
non zero functions and = is a non-negative real constant, a mapping @: G — R.

Stability of the equation (T, )
In this section, we investigate the stability of the trigonometric functional equation

(T

Theorem
Suppose that f, g: G — C satisfy the inequality

|f(22) - fQ2y) - 2g(x+¥)f (x - y)| < plx) (2.1)

for all x,v € G.If f fails to be bounded then f and g satisfy
g(2x) +g(2y) = 2g(x +¥)f(x— y) (22)

Proof
Equation (2.1) can be written as

It )~ flu—v) - 29Wf W <o) (23)

Let f be unbounded. Then we can choose a sequence ol in & such that
0 # |f(w,)] = a5 n = © Taking ¥ = ¥» in (2-3) we obtain
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Fluto)—flu-u) ()‘ o(*37) ”

| 2f(w) = 2/f(,) '
that is

S 25)

forall u e 6.
Using (2.3) we have

@{’m)-l- ;l{:u ’ i_ﬁn} =lflu+v+v,) - flu—v—uv,) - 20 fv+v,] +
If::u +v—,) — f[:x — v+, —2glu)f(v — v, (2.€)
so that
[ +v) +v) - Fllut ) -v,)) | Flu-v)+v) - fllu-v)-v,))
| 2f(vy) 2 (Vr
f(L+tT|—f(L—tT:I| E':l rH' (1+‘é—1f,::}
TRy IS 20F®,)

Taking lim as n — oo on both sides
lglu+v)+ glu—v)—2gwfv) <0

that is
lg(2x)+ g(2y) — 2g(x+v)f(x—y)| =0

for all x,v € G. Therefore f and g satisfies (2.2).

Corollary
Suppose that f, g: G — C satisfy the inequality

|f(2x) — f(2y) —2g(x+y)flx—y) < e

forall x,y € G.If f fails to be bounded then f and g satisfy
g(2x) + g(2y) = 2g(x + ¥)f(x — ¥)

Stability of the equation (T,)
In this section, we investigate the stability of the trigonometric functional equation

().

Theorem
Suppose that f, g: G — C satisfy the inequality
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lg(2y) — g(2x) — 2f(x+ W)f (x — ¥)| < (x) (3.1)
for all x,v € G.If f fails to be bounded then f satisfy

g(2x) +g(2y) = 2g(x + y)g(x = ¥) (3.2)
Proof
Equation (3.1) can be written as

lglu—v)—glu +v)— 2f)fV)| < @ (%) (3.3)

Let f be unbounded. Then we can choose a sequence {w,} in G such that
0 # |f(w,)] = o0as n— oo Taking v = v, in (2.3) we obtain

2f(@,) = 21wl '
that is c , X )
—v,)— + v,
I ey W 35)
forall u e G.

Using (3.3) we have
utvtov, utv-v
o[ =5+l

) = lg(u-(v+v,)) - glu+ v +v,)) - 2f(W)f(v+v,) +

2 2
9w~ (v -v,)) - glu + (v -v,)) - 2f()f (v - v,)| (3.6)
so that
‘Q([ﬂ -] - 'l"'n} - Q{E’H —u) +1,)) 3 g(u:u +v) — 1,_.5} _ Ei‘l':'“ +1) +1.‘r__j;|
2[(v.) 27 (o)
— i fo+v,)— flv - ‘lJ',,JI — © {U- * l;-l- Un} + tﬂ(u + 1;_ Un)

Taking lim as n — oo on both sides

Flutv) 4+ flu—v) —2f(WF) <0

Flotvg)—Ffle—vy)
I
where f(v) o

that is
IF2x)+ f(2y) —2flx+¥)f(x—w)| <0

for all x,y € G. Therefore f satisfy (3.2).
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Corollary
Suppose that f, g: G — C satisfy the inequality

lg(2y) — g(2x) — 2f(x + y)flx—y)| = ¢

forall x,v € G.If f fails to be bounded then f satisfy
g(2x) + g(2y) = 2g(x + y)g(x — ¥).
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