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Abstract 
 

In this paper, the steady rotary flow of a second-order thermo-viscous fluid 
between two concentric spheres is examined. The viscous dissipation term in 
the energy equation is neglected. The velocity and temperature fields are 
obtained analytically from the momentum and energy equations using 
appropriate boundary conditions. The drag force, viscous couple and the 
Nussult number on the inner and outer boundaries of the spheres are 
calculated. The pressure and the stress components are calculated and these 
are influenced by the thermo-viscous parameters 86 , . It is noted that a force 
is generated in transverse direction due to the thermo-stress and thermo-stress-
viscous nature of the fluid. The existence of F is a remarkable feature of 
thermo-viscous fluid. Such a force is not needed in sustaining the motion 
when the fluid is classical Newtonian Fourier heat conducting fluid Lamb 
[15]. 
 
Key words: Thermo-viscous fluids, heat flux bi-vector, Steady  flow, couple, 
drag  force, Nussult  number, Stresses. 

 
 
INTRODUCTION: 
A Thermo-viscous fluid (i.e. a viscous fluid in a thermal state) is characterized by two 
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sets of constitutive equations, one for the stress and the other for the heat. The stress 
tensor S  and the heat flux bi-vector h are polynomial functions of the kinematic 
tensors, the deformation rate tensor d and the thermal bi-gradient vector b; where 
 ),;,( bdSS  , ),;,( bdhh  , 2/)( ,, ijji uud   
 |||||||| ,kijkijbb  , |||||||| ,kijkij qhh   
 
where iu  is the velocity in the thi - direction,   the temperature,   the density and 

kq,  heat flux in the thk - direction. These equations can be seen in agreement with the 
principles of determinism, material objectivity and equipresence. Further, these 
functions are hemitropic polynomial functions of tensors kmd and kmb . 
 The thermo-viscous fluids are classified by the combined degrees N&P of d and b 
respectively in the constitutive relations. 
 
 
ZERO ORDER THEORY: 
In this case 0 PN . Therefore all the constitutive coefficients with the exception 
of 1  are equal to zero. The constitutive equations reduce to 
 IS 1   (1) 
 0h   (2) 
 
where 1  is independent of d and b and is simply a function of  and  .The 
materials characterized by these equations are nothing but so called ideal (non-
Viscous) fluids with 1  (<0) representing the hydrostatic pressure. 
 
 
FIRST ORDER THEORY  
In this case, Max 1||  PN . Therefore the constitutive equations for this case 
become 
 dIS 31    (3) 
 bh 1   (4) 
 
where the constitutive coefficients 1 , 3  and 1  are scalar polynomials in trd  with 
coefficients which are functions of   and  . 
 The equations (3) may be recognized as the constitutive equations of the first 
order simple fluid of Noll’s type or that of the classical Newtonian –viscous fluids. 
The equation (4) is the same as the linear law of heat conduction i.e. Fourier law. For 
this reason the fluids characterized by these equations (3) and (4) have been referred 
to as classical Newtonian-viscous and Fourier heat conducting fluids in the foregoing 
chapters. 
 It may be noticed that from the theory of zeroth  and first order theories, the 
constitutive relations are decoupled in deformation rate tensor d and thermal bi-
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gradient vector b and therefore both these theories do not truly describe the interaction 
between the viscous and thermal characteristics of the medium. It is therefore 
necessary to consider higher order theories which exhibit such interactions. 
 
 
SECOND-ORDER THERMO-VISCOUS FLUIDS 
In this case, we have Max 2||  PN .The second order thermo-viscous fluids are 
characterized by the constitutive equations 
 )(8

2
6

2
531 bddbbddIS    (5)

 )(31 bddbbh    (6) 
 
 Where the constitutive coefficients s

i
'  and s

i
'  are scalar polynomials in the 

traces of respective arguments. 
  p1 :     p  is the  fluid pressure 
  23   :      is the coefficient of classical (Newtonian) viscosity 
 c 45  : c is the coefficient of (Reiner-Rivlin) cross-viscosity 
 6  : Thermo-stress coefficient 
 82  : coefficient of Kho-Eringen thermo-stress-viscous 
 k 1  : k   (Fourier) thermal conductivity coefficient. 
 3  : strain thermal conductivity coefficient. 
 
 This is the simplest model for a thermo-viscous fluid which could contain the 
interaction between mechanical and thermal phenomena in both constitutive 
equations. 
 
 
FORMU(LATION AND SOLUTION OF THE PROBLEM 
Introducing the spherical polar coordinate system ),,( r with 0 coinciding with 
the axis of rotation in which the common centre is situated. Further r is the radial 
distance from the centre. The fluid flow is represented by the velocity )),(,,0,0( rw
and the temperature distribution ),(  r . This choice of velocity evidently satisfies the 
continuity equation. r = b  
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Fig 1.   Flow configuration 
 
 The rate of deformation tensor d: 
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 Thermal bi-gradient matrix: 
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 (8) 

 
 The thermo-viscous fluid is characterized by the following stress- tensor S  and 
heat-flux vector h  and these are given by The stress tensor  

)(242 8
2

6
2 bddbbddpIS c    (9) 
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THE EQUATIONS OF MOTION: 
In the radial direction: 
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In the transverse direction 
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In   direction: 
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Equation of motion in   direction reduced to 
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The energy equation reduces to 
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 Consider the slow steady flow of a second order thermo-viscous fluid between 
two spheres of radii ,a )( abb  . When the spheres are rotating with constant angular 
velocities ba  , respectively and rotating about a common diameter and kept at 
temperatures ba  ,  respectively 
 The boundary conditions 
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 Introducing the non-dimensional quantities. 
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 The boundary conditions (16) reduce to 
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 Now the equations in the Non-dimensional form 
 i.e. the momentum and energy equations (14) and (15) with(17) reduce to  

 0cos 2
2

2  ec
R
WW  (19) 

and  
 02  T   (20) 
where         

 



 















 22

2

22

2
2 cot12

RRRRR
 

 
 Let  sin)(),( RFRW   (21) 
 Substituting (21) in (19), we get 

 0sin22
2

1
11 








 

R
F

R
FF  (22) 

 ,0sin  022
2

1
11 




R
F

R
FF  (23) 

 
 Hence 

 2)(
R
BARRF   (24) 

  sin),( 2 




 

R
BARRW  (25) 

 
 Using the boundary conditions, the equation (25) reduces to the form 

 






 sin1
1

)1(
1
1),( 23

3

3

3
































R

RRW  (26) 

 
 Let 
  2sin)()(),( RHRGRT   (27) 
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substituting (27) in (20), we get 

 0242sin42
22

1
112

2

1
11 










R
H

R
H

R
HH

R
H

R
GG   (28) 

 
consider      

 ,042
2

1
11 

R
H

R
GG  (29) 

 062
2

1
11 

R
H

R
HH  (30) 

 
 The boundary conditions for HandG are 

 







0)(,0)1(
1)(,0)1(




HH
GG

 (31) 

 
using the boundary conditions (31) we get   

 0)(11
1

)( 





 


 RHand

R
RG


  (32) 

 
 Hence the temperature distribution (the solution of (27)) 

 
1

11)()(








 




R
RGRT  (33) 

 
 The pressure distribution is obtained from the momentum equation in radial 
direction (11). 

 i.e.   









R
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R
BRAappp a

2
42

sin)( 4

222
22
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 422

22
6

6

222

)1(2
)(

2
sin15

RaR
B abac











 

   












 



 cos
)1(5

6
58 ab

a

aR
B

 (34) 

 
where   

 3

3

3

3

1
)1(,

1
1














 BA  

 
 Stress components are obtained as follows 

 6

222 sin9
R

BPS ac
rr

 
  (35) 
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6
1
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













 




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222 sin9
R
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
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 4

22

6
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
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
 







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

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5
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

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 aR

BS aab
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r





  (40) 

 
 The force component in the transverse direction 

  
6

)1(
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5
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2

3922sin
2
3

2
8

7
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
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 (41) 

 
 The drag force on the inner sphere  

   







dSSr RrRrr
2

11
2

0

2
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
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 The drag force on the outer sphere 

   







dSSr RrRrr
22

0

2
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5
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
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 (43) 

 
 The viscous couple on the inner sphere  

  



dSr Rr
2

1
3

0

sin|2   

 
)1(

)1(8
3

33


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

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 The viscous couple on the outer sphere  
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  



dSr Rr
23

0

sin|2   

 
)1(

)1(8
3

33







 aa
 (45) 

 =  the viscous couple on the inner sphere. 
 
 Nussult number on the inner sphere  

 arr 


 |  

 











1

)(



a
ab  (46) 

 
 Nussult number on the outer sphere  

 brr 


 |  

 
)1(
)(








b

ab  (47) 

 
 The dissipation of energy is given by ijij Sd  

 6

222 sin9
R

B a 
  (48) 
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