IFSM's generated by IFS's

Pearly P. John¹ and Paul Isaac²

Department of Mathematics, Bharata Mata College, Thrikkakara Kochi-682 021, Kerala, India ¹Corresponding author; e-mail: pearlybmc@gmail.com ²e-mail: pibmct@gmail.com

Abstract

The concept of an intuitionistic fuzzy set, which is a generalization of the concept of a fuzzy set, was introduced by Krassimir T. Atanassov in 1986. In this article, we study about the intuitionistic fuzzy submodule (IFSM) generated by an intuitionistic fuzzyset (IFS) in an R-module M and investigate some related properties. Also we discuss the notion of equivalent intuitionistic fuzzy sets in an R-module M.

Mathematics Subject Classification: 03F55, 08A72, 16D10

Keywords: Intuitionistic Fuzzy Submodule, Intuitionistic Fuzzy Ideal, Generating Intuitionistic Fuzzy Set, Equivalent Intuitionistic Fuzzy Sets.

1 Introduction

As a generalization of a fuzzy set, the concept of an intuitionistic fuzzy set was introduced by K. T. Atanassov [1,2]. Applying this concept to algebra, B. Davvasetal. [3] established the intuitionistic fuzzification of the concept of submodules of an R-module. In this paper, in section 2 we give the essential preliminaries and in section 3 we introduce intuitionistic fuzzy submodule generated by an intuitionistic fuzzy set in an R-module M and using this concept we investigate some related properties. In section 4 we study the notion of equivalent intuitionistic fuzzy sets in an R-module M and prove some results.

Throughout this paper, we denote by *I* the unit interval [0, 1], by *R* a commutative ring with unity 1 and by *M* a unitary *R*- module. \lor denotes the maximum, and \land the minimum in the unit interval [0, 1].

2 Preliminaries

In this section we give some basic definitions and results which are used in the sequel. For knowledge regarding modules and fuzzy modules we refer the books by Hungerford [4] and Mordeson & Malik [6] respectively.

2.1. Definition ([1]). An intuitionistic fuzzy set (in short IFS) A in a nonempty set X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ where the functions $\mu_A: X \to I$ and $\nu_A: X \to I$ denote respectively the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we will denote the set of all IFS's in X as IFS(X).

2.2. Definition ([1]). Let X be a non-empty set and $A = (\mu_{A'}, \nu_A)$, $B = (\mu_{B'}, \nu_B)$ be IFS's in X. Then

- 1. $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$ 2. A = B if and only if $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$ for all $x \in X$
- 3. $A^{C} = (v_{A}, \mu_{A})$
- 4. $A \cap B = \{(x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x)) : x \in X\}$
- 5. $A \cup B = \{(x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x)) : x \in X\}$

2.3. Definition ([7]). A fuzzy set μ in M is called a fuzzy submodule of M if for every $x, y \in M$ and $r \in R$, the following conditions are satisfied

- 1. $\mu(0) = 1$
- 2. $\mu(x + y) \ge \mu(x) \land \mu(y)$
- 3. $\mu(rx) \geq \mu(x)$

2.4. Definition ([3]). Let M be a module over a ring R. An IFS $A = (\mu_A, \nu_A)$ in M is called an intuitionistic fuzzy submodule (IFSM) of M if

1. $\mu_A(0) = 1$ and $\nu_A(0) = 0$ 2. $\mu_A(x + y) \ge \mu_A(x) \land \mu_A(y) \forall x, y \in M$ 3. $\nu_A(x + y) \le \nu_A(x) \lor \nu_A(y) \forall x, y \in M$ 4. $\mu_A(rx) \ge \mu_A(x) \forall x \in M, \forall r \in R$ 5. $\nu_A(rx) \le \nu_A(x) \forall x \in M, \forall r \in R$

Remark. By saying that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy module (IFM) we mean that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy submodule of some *R*-module *M*, denote as $A \in \mathsf{IFSM}(M)$.

2.5. Definition ([5]). Let X be a non-empty set and $A = (\mu_A, \nu_A)$ be an IFS in X, and $\alpha, \beta \in [0, 1]$ be such that $\alpha + \beta \leq 1$. Then the (α, β) -level set of A is defined as $A_{(\alpha,\beta)} = \{ x \in X : \mu_A(x) \ge \alpha, v_A(x) \le \beta \}.$

2.6. Definition ([9]). Let X be a non-empty set. The intuitionistic fuzzy point $\hat{1}_{\{0\}}$ in X is defined as $\hat{1}_{\{0\}} = (\mu_{\hat{1}_{\{0\}}}, \nu_{\hat{1}_{\{0\}}})$ where

IFSM's generated by IFS's

 $\mu_{\widehat{1}_{\{0\}}}(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases} \quad \text{and} \quad \nu_{\widehat{1}_{\{0\}}}(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases} \quad \forall x \in X.$

2.7. Definition ([9]). Let $A_i = (\mu_{A_i}, \nu_{A_i})$ $(i \in J, |J| > 1)$, be a family of IFSM's of *M*. Then $\sum_{i \in J} A_i = \{(x, \mu_{\sum_{i \in J} A_i} (x), \nu_{\sum_{i \in J} A_i} (x)) : x \in M\}$, where,

$$\mu_{\sum_{i\in J}A_i} (x) = \vee \{ \wedge_{i\in J} \mu_{A_i}(x_i) : x_i \in M, i \in J, \sum_{i\in J}x_i = x \} \quad \forall x \in M,$$
and
$$\nu_{\sum_{i\in J}A_i} (x) = \wedge \{ \vee_{i\in J} \nu_{A_i}(x_i) : x_i \in M, i \in J, \sum_{i\in J}x_i = x \} \quad \forall x \in M,$$

where, in $\sum_{i \in J} x_i$, at most finitely many x_i 's are not equal to zero. $\sum_{i \in J} A_i$ is called the weak sum of the A_i 's.

2.8. Definition ([6]). Let μ be a fuzzy subset in M. Then $\cap \{\nu : \mu \subseteq \nu, \nu \text{ is fuzzy submodule of } M$ is a fuzzy submodule of M, called the fuzzy submodule generated by the fuzzy subset μ and denoted by $\langle \mu \rangle$.

2.9. Definition ([10]). Two fuzzy subsets μ, ν in an *R*-module *M* are said to be equivalent if $\langle \mu \rangle = \langle \nu \rangle$.

3 IFSM generated by an IFS

In this section we study about the IFSM generated by an IFS in an R-module M and their properties. Also we prove some related results.

3.1. Theorem ([8]). Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IFSM's of M, then $A \cap B = (\mu_{A \cap B}, \nu_{A \cap B})$ is also an IFSM of M.

3.2. Corollary. Let $A_i = (\mu_{A_i}, \nu_{A_i})$ $(i \in J, |J| > 1)$, be a family of IFSM's of an *R*-module *M*. Then $\bigcap_{i \in J} A_i$ is an IFSM of *M*.

3.3. Theorem ([9]). Let $A_i = (\mu_{A_i}, \nu_{A_i})$ $(i \in J, |J| > 1)$, be a family of IFSM's of an *R*-module *M*. Then $\sum_{i \in J} A_i$ is an IFSM of *M*.

3.4. Definition. Let $A = (\mu_A, \nu_A)$ be an IFS in an *R*-module *M*. Then $\cap \{B : A \subseteq B, B \in \text{IFSM}(M)\}$ is an IFSM of *M*, called the intuitionistic fuzzy submodule generated by the IFS *A*, and is denoted by $\langle A \rangle$.

3.5. Definition. Let $B = (\mu_B, \nu_B)$ be an IFSM of M such that $B = \langle A \rangle$ for some IFS $A = (\mu_A, \nu_A)$ in M. Then A is called a generating IFS of B.

Result: Let *A*, *B* be IFS's in *M*. Then the following can be verified. $A \in \text{IFSM}(M) \iff \langle A \rangle = A$ $A \subseteq B \implies \langle A \rangle \subseteq \langle B \rangle$ $\langle A/N \rangle \subseteq \langle A \rangle/N \in \text{IFSM}(N)$ where *N* is a submodule of *M*, *A/N* and $\langle A \rangle/N$ are the restrictions of A and $\langle A \rangle$ to N respectively.

3.6. Theorem. Let $A_i = (\mu_{A_i}, \nu_{A_i})$ $(i \in J, |J| > 1)$, be a family of IFSM's of an *R*-module *M*. Then $\langle \bigcup_{i \in J} A_i \rangle = \sum_{i \in J} A_i$.

Proof. We have $\sum_{i \in J} A_i = (\mu_{\sum_{i \in J} A_i}, \nu_{\sum_{i \in J} A_i})$ is an IFSM of *M* (by theorem 3.3), where

 $\mu_{\sum_{i \in J} A_i} (x) = \vee \{ \bigwedge_{i \in J} \mu_{A_i} (x_i) : x_i \in M, i \in J, \sum_{i \in J} x_i = x \}$ and $\nu_{\sum_{i \in J} A_i} (x) = \wedge \{ \bigvee_{i \in J} \nu_{A_i} (x_i) : x_i \in M, i \in J, \sum_{i \in J} x_i = x \} \quad \forall x \in M$ where, in $\sum_{i \in J} x_i$, at most finitely many x_i 's are not equal to zero.
Therefore $\mu_{A_i} (x) \leq \mu_{\sum_{i \in J} A_i} (x)$ and $\nu_{A_i} (x) \geq \nu_{\sum_{i \in J} A_i} (x) \quad \forall x \in M, i \in J$ Hence $A_i \subseteq \sum_{i \in J} A_i \quad \forall i \in J$, that is $\sum_{i \in J} A_i$ is an IFSM that contains all A_i 's.
Now to show that it is the smallest IFSM that contains all A_i 's , let $B = (\mu_B, \nu_B)$ be any IFSM of M which contains all A_i 's. That is $A_i \subseteq B \quad \forall i \in J$, which means that $\mu_{A_i} (x) \leq \mu_B (x)$ and $\nu_{A_i} (x_i) \geq \nu_B (x) \quad \forall x \in M, i \in J.$ Let $x \in M$ where $x = \sum_{i \in J} x_i, x_i \in M$, then $\mu_{\sum_{i \in J} A_i} (x) = \vee \{ \bigwedge_{i \in J} \mu_{A_i} (x_i) : x_i \in M, i \in J, \sum_{i \in J} x_i = x \}$ $\leq \vee \{ \bigwedge_{i \in J} \mu_B (x_i) : x_i \in M, i \in J, \sum_{i \in J} x_i = x \}$ $\leq \vee \{ \mu_B (\sum_{i \in J} x_i) : x_i \in M, i \in J, \sum_{i \in J} x_i = x \}$ $= \mu_B (x).$

Similarly we can obtain $v_{\sum_{i \in J} A_i}$ $(x) \ge v_B(x) \forall x \in M$. Therefore $\sum_{i \in J} A_i \subseteq B$. Thus $\sum_{i \in J} A_i$ is the smallest IFSM which contains all A_i 's, hence $\sum_{i \in J} A_i$ is the smallest IFSM which contains $\bigcup_{i \in J} A_i$. Therefore $\langle \bigcup_{i \in J} A_i \rangle = \sum_{i \in J} A_i$. Hence the theorem.

3.7. Definition. Let $C = (\mu_C, \nu_C)$ be an IFS in a ring *R* and $A = (\mu_A, \nu_A)$ be an IFS in an *R*-module *M*. Define *C*. *A* and $C \odot A$ as IFS's in *M* as follows 1. $C \cdot A = (\mu_{C,A}, \nu_{C,A})$ where

 $\mu_{C,A}(x) = \bigvee \{\mu_{C}(r) \land \mu_{A}(y) : r \in R, y \in M, ry = x\} \text{ and} \\ \nu_{C,A}(x) = \land \{\nu_{C}(r) \lor \nu_{A}(y) : r \in R, y \in M, ry = x\} \quad \forall x \in M.$ 2. $C \odot A = (\mu_{C \odot A}, \nu_{C \odot A}) \text{ where} \\ \mu_{C \odot A}(x) = \lor \{\wedge_{i=1}^{n} (\mu_{C}(r_{i}) \land \mu_{A}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \le i \le n, n \in N, \\ \Sigma_{i=1}^{n} r_{i} x_{i} = x\} \text{ and} \\ \nu_{C \odot A}(x) = \land \{\vee_{i=1}^{n} (\nu_{C}(r_{i}) \lor \nu_{A}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \le i \le n, n \in N, \\ \Sigma_{i=1}^{n} r_{i} x_{i} = x\} \text{ and} \\ \nu_{C \odot A}(x) = \land \{\vee_{i=1}^{n} (\nu_{C}(r_{i}) \lor \nu_{A}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \le i \le n, n \in N, \\ \Sigma_{i=1}^{n} r_{i} x_{i} = x\} \forall x \in M.$

3.8. Theorem. Let $A = (\mu_A, \nu_A)$ be an IFS in *M*, then 1. For all $r \in R$, $\hat{1}_{\{r\}} \cdot A = rA$ 2. For all $r \in R$, $x \in M$, $\hat{1}_{\{r\}} \odot A = (\mu_{\hat{1}_{\{r\}}} \odot_{A'} \nu_{\hat{1}_{\{r\}}} \odot_{A})$ where $\mu_{\hat{1}_{\{r\}}} \odot_{A}(x) = \vee \{ \wedge_{i=1}^{n} \mu_{A}(x_{i}) : x_{i} \in M, 1 \le i \le n, n \in N, r\Sigma_{i=1}^{n} x_{i} = x \}$ IFSM's generated by IFS's

and
$$v_{\widehat{1}_{\{r\}} \odot A}(x) = \wedge \{ \bigvee_{i=1}^{n} v_A(x_i) : x_i \in M, 1 \le i \le n, n \in N, r \sum_{i=1}^{n} x_i = x \}.$$

Proof. For $r \in R$, the IFP $\hat{1}_{\{r\}} = (\mu_{\hat{1}_{\{r\}}}, \nu_{\hat{1}_{\{r\}}})$ in R is defined by $\mu_{\hat{1}_{\{r\}}}(s) = \begin{cases} 1 & \text{if } s = r \\ 0 & \text{otherwise} \end{cases}$ and $\nu_{\hat{1}_{\{r\}}}(s) = \begin{cases} 0 & \text{if } s = r \\ 1 & \text{otherwise} \end{cases}$ For any $r \in R$, $\hat{1}_{\{r\}} \cdot A = (\mu_{\hat{1}_{\{r\}}} \cdot A', \nu_{\hat{1}_{\{r\}}} \cdot A)$. Now for $x \in M, r \in R$ we have $\mu_{\widehat{1}_{\{r\}},A}(x) = \vee \{\mu_{\widehat{1}_{\{r\}}}(s) \land \mu_{A}(y) : s \in R, y \in M, sy = x\}$ $= \bigvee \{\mu_A(y) : r \in R, y \in M, ry = x\}$, by the definition of $\mu_{\widehat{1}_{(r)}}(s)$ $= \mu_{rA} (x)$ Similarly we get $v_{\widehat{1}_{\{r\}},A}(x) = v_{rA}(x) \quad \forall x \in M$. Hence $\widehat{1}_{\{r\}}, A = rA \quad \forall r \in R$.

For any $r \in R$, $x \in M$ $\mu_{\hat{1}_{\{r\}} \odot A}(x) = \forall \{ \wedge_{i=1}^{n} (\mu_{\hat{1}_{\{r\}}}(r_{i}) \land \mu_{A}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, d_{i} \}$ $n \in N, \Sigma_{i=1}^n r_i x_i = x$

 $n \in N, \Sigma_{i=1}^{i} r_{i} x_{i} = V \{ \Lambda_{i=1}^{n} \mu_{A}(x_{i}) : x_{i} \in M, 1 \le i \le n, n \in N, r \Sigma_{i=1}^{n} x_{i} = x \}$ Clearly, Similarly we get,

$$\nu_{\widehat{1}_{\{r\}} \odot A}(x) = \wedge \{ \bigvee_{i=1}^{n} \nu_{A}(x_{i}) : x_{i} \in M, 1 \le i \le n, n \in N, r \sum_{i=1}^{i} x_{i} = x \}.$$

3.9. Definition. Let $A = (\mu_A, \nu_A)$ be an IFS in a ring R. Then A is called an intuitionistic fuzzy ideal (IFI) of R if it satisfies the conditions

1. $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y)$ $\nu_A(x-y) \le \nu_A(x) \lor \nu_A(y) \quad \forall x, y \in R \text{ and}$ 2. $\mu_A(xy) \ge \mu_A(x) \lor \mu_A(y)$

 $v_A(xy) \leq v_A(x) \wedge v_A(y) \quad \forall x, y \in R$. We denote the set of all IFI's of R by IFI (R).

3.10. Theorem. Let $A = (\mu_A, \nu_A)$ be an IFI of R and $B = (\mu_B, \nu_B)$ be an IFSM of M. Then $A \odot B \in IFSM(M)$.

Proof. By the definition we have $\mu_{A \odot B}(0) = \vee \{ \wedge_{i=1}^{n} (\mu_{A}(r_{i}) \land \mu_{B}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, k \in N \}$ $\sum_{i=1}^{n} r_i x_i = 0$ when $r_i = x_i = 0 \quad \forall i = 1 \text{ to } n, \text{ since } \mu_A(0) \ge \mu_A(r) \quad \forall r \in R$ Similarly we get $v_{A \odot B}(0) = 0.$ Now for any $r \in R$, $x \in M$, $\mu_{A \odot B}(rx) = \vee \{ \bigwedge_{i=1}^{n} (\mu_{A}(r_{i}) \land \mu_{B}(x_{i})) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \}$ $\sum_{i=1}^{n} r_i x_i = rx\}$ $\geq \vee \{ \wedge_{i=1}^{n} (\mu_A(rs_i) \wedge \mu_B(z_i)) : s_i \in R, \ z_i \in M, 1 \leq i \leq n, n \in N,$ $r\sum_{i=1}^{n} S_i Z_i = rx$ $\geq \vee \{ \wedge_{i=1}^{n} (\mu_{A}(s_{i}) \wedge \mu_{B}(z_{i})) : s_{i} \in R, z_{i} \in M, 1 \leq i \leq n, n \in N, \}$ $\Sigma_{i=1}^{n} s_{i} z_{i} = x \} \text{ (In particular when } r = 1 \text{ on}$ RHS, also since $A = (\mu_{A}, \nu_{A}) \in \text{IFI } (R), \ \mu_{A}(rs_{i}) \ge \mu_{A}(r) \lor \mu_{A}(s_{i}) \ge \mu_{A}(s_{i})$

 $= \mu_{A \odot B}(x).$ Similarly we get $v_{A \odot B}(rx) \leq v_{A \odot B}(x) \forall x \in M, r \in R.$ Now to show that $\mu_{A \odot B}(x + y) \ge \mu_{A \odot B}(x) \land \mu_{A \odot B}(y) \forall x, y \in M$, let $x, y \in M$ M we have $\mu_{A \odot B}(x + y) = \bigvee \{ \bigwedge_{i=1}^{n} (\mu_{A}(r_{i}) \land \mu_{B}(z_{i})) : r_{i} \in R, z_{i} \in M, 1 \leq i \leq n, n \in N, \}$ $\sum_{i=1}^{n} r_i z_i = x + y \}$ $\geq \vee \{ \Lambda_{i=1}^{n} (\mu_{A}(s_{i}) \land \mu_{B} (x_{i} + y_{i})) : s_{i} \in R, x_{i}, y_{i} \in M, 1 \leq i \leq n, \\$ $n \in N, \ \Sigma_{i=1}^n s_i (x_i + y_i) = x + y \}$ $\geq \vee \{ \wedge_{i=1}^n (\mu_A(s_i) \land (\mu_B(x_i) \land \mu_B(y_i))) : s_i \in R, x_i, y_i \in M,$ $1 \le i \le n, n \in N, \Sigma_{i=1}^{n} s_i (x_i + y_i) = x + y$ (since $B = (\mu_{B_1}, \nu_B) \in \text{IFSM}(M)$) $= \vee \{ \wedge_{i=1}^{n} ((\mu_{A}(s_{i}) \wedge \mu_{B}(x_{i})) \wedge (\mu_{A}(s_{i}) \wedge \mu_{B}(y_{i}))) : s_{i} \in R,$ $x_{i}, y_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i}(x_{i} + y_{i}) = x + y$ $\geq \vee \{ (\Lambda_{i=1}^{n} (\mu_{A}(s_{i}) \land \mu_{B}(x_{i})) : s_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} x_{i} = x \} \land$ $(\wedge_{i=1}^{n} (\mu_{A}(s_{i}) \wedge \mu_{B}(y_{i})): s_{i} \in R, y_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} y_{i} = y)$ $= (\vee \{ \wedge_{i=1}^{n} (\mu_{A}(s_{i}) \land \mu_{B}(x_{i})) : s_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} x_{i} = x \})$ $\wedge (\vee \{ \wedge_{i=1}^n (\mu_A(s_i) \land \mu_B(y_i)) : s_i \in R, y_i \in M, 1 \le i \le n, n \in N \Sigma_{i=1}^n s_i y_i = y \})$ $= \mu_{A \odot B}(x) \land \mu_{A \odot B}(y) \quad \forall x, y \in M$ Similarly we can get $v_{A \odot B}(x + y) \le v_{A \odot B}(x) \lor v_{A \odot B}(y) \quad \forall x, y \in M$ Hence $A \odot B$ is an IFSM of *M*.

Note: Let M = R. From above theorem if $A , B \in IFI(R)$, then $A \odot B \in IFI(R)$.

3.11. Theorem. Let $A = (\mu_A, \nu_A)$ be an IFS in M. Define $B = (\mu_B, \nu_B)$, an IFS in M as follows: $\forall x \in M$ $\mu_B(x) = 1$ if x = 0, $\mu_B(x) = \vee \{ \bigwedge_{i=1}^n \mu_A(x_i) : r_i \in R, x_i \in M, 1 \le i \le n, n \in N, \sum_{i=1}^n r_i x_i = x \}$ otherwise. And $\nu_B(x) = 0$ if x = 0,

 $v_B(x) = \wedge \{v_{i=1}^n v_A(x_i) : r_i \in R, x_i \in M, 1 \le i \le n, n \in N, \Sigma_{i=1}^n r_i x_i = x\}$ otherwise.

That is $B = \hat{1}_{\{0\}} \cup (\hat{1}_R \odot A)$. Then $\langle A \rangle = B$.

Proof. Clearly $A \subseteq B$ since $\forall x \in M, \mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$. By definition $\mu_B(0) = 1$ and $\nu_B(0) = 0$. Let $r \in R$, $x \in M$. If rx = 0 then $\mu_B(rx) = 1 \geq \mu_B(x)$ and $\nu_B(rx) = 0 \leq \nu_B(x)$. Suppose $rx \neq 0$ then $x \neq 0$ and $\mu_B(rx) = \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : r_i \in R, x_i \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^n r_i x_i = rx \}$ $\geq \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : s_i \in R, x_i \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^n r_i x_i = rx \}$ $= \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : s_i \in R, x_i \in M, 1 \leq i \leq n, n \in N, r(\sum_{i=1}^n s_i x_i) = rx \}$ $\geq \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : s_i \in R, x_i \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^n s_i x_i = x \}$ $\geq \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : s_i \in R, x_i \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^n s_i x_i = x \}$ (In particular when r = 1) $= \mu_B(x).$ Similarly we can get $\nu_B(rx) \le \nu_B(x) \forall r \in R, x \in M.$ Now let $x, y \in M$. If x, y or x + y equal to zero then clearly $\mu_B(x + y) \ge \mu_B(x) \land \mu_B(y)$ and $\nu_B(x + y) \le \nu_B(x) \lor \nu_B(y).$ Suppose x, y and x + y are all not equal to zero, then $\mu_B(x + y) = \lor \{ \bigwedge_{i=1}^n \mu_A(z_i) : r_i \in R, z_i \in M, 1 \le i \le n, n \in N, \sum_{i=1}^n r_i z_i = x + y \}$ $\ge \lor \{ \bigwedge_{i=1}^n \mu_A(z_i) : z_i = x_i + y_i, x_i, y_i \in M, s_i \in R, 1 \le i \le n, n \in N, \sum_{i=1}^n s_i(x_i + y_i) = x + y \}$ $= \lor \{ (\bigwedge_{i=1}^n \mu_A(x_i)) \land (\bigwedge_{i=1}^n \mu_A(y_i)) : s_i \in R, x_i, y_i \in M, 1 \le i \le n, n \in N, \sum_{i=1}^n s_i x_i + \sum_{i=1}^n s_i y_i = x + y \}$

$$\geq \vee \{ (\wedge_{i=1}^{n} \mu_{A}(x_{i}) : s_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} x_{i} = x) \land \\ (\wedge_{i=1}^{n} \mu_{A}(y_{i}) : s_{i} \in R, y_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} y_{i} = y) \}$$

= $(\vee \{ \wedge_{i=1}^{n} \mu_{A}(x_{i}) : s_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} x_{i} = x \}) \land$
 $(\vee \{ \wedge_{i=1}^{n} \mu_{A}(y_{i}) : s_{i} \in R, y_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} s_{i} y_{i} = y \})$
= $\mu_{B}(x) \land \mu_{B}(y)$

Similarly we can obtain $v_B(x + y) \le v_B(x) \lor v_B(y)$ in this case. Hence $B = (\mu_B, v_B)$ is an IFSM of M which contains A. Now let $C = (\mu_C, v_C)$ be any IFSM of M which contains A. We will show that $B \subseteq C$. Since $A \subseteq C$, we have $\mu_A(x) \le \mu_C(x)$ and $v_A(x) \ge v_C(x) \lor x \in M$. Now $\mu_B(x) = \lor \{ \bigwedge_{i=1}^n \mu_A(x_i) : r_i \in R, x_i \in M, 1 \le i \le n, n \in N, \sum_{i=1}^n r_i x_i = x \}$ $\le \lor \{ \bigwedge_{i=1}^n \mu_C(x_i) : r_i \in R, x_i \in M, 1 \le i \le n, n \in N, \sum_{i=1}^n r_i x_i = x \}$ $= \mu_C(x)$. (since $\mu_C(x) = \mu_C(\sum_{i=1}^n r_i x_i) \ge \bigwedge_{i=1}^n \mu_C(r_i x_i) \ge \bigwedge_{i=1}^n \mu_C(x_i)$ $\therefore \mu_C(x) = \lor \{\bigwedge_{i=1}^n \mu_C(x_i), n \in N\}$) Similarly we can obtain $u_i(x) \ge u_i(x) \bowtie x_i \in M$. Therefore $B \subseteq C$

Similarly we can obtain $v_B(x) \ge v_C(x) \forall x \in M$. Therefore $B \subseteq C$. Thus we proved $\langle A \rangle = B$.

4 Equivalent IFS's in an *R*-module *M*

In this section we introduce Equivalent IFS's in an R-module M and give a sufficient condition for two IFS's in an R-module M to be equivalent.

4.1. Definition. Two IFS's $A = (\mu_{A'}, \nu_A)$ and $B = (\mu_{B'}, \nu_B)$ in an *R*-module *M* are said to be equivalent if $\langle A \rangle = \langle B \rangle$.

4.2. Theorem. Let $A = (\mu_{A}, \nu_{A})$, $B = (\mu_{B}, \nu_{B})$ be IFS's in an R-module M and forevery $\alpha, \beta \in (0, 1]$ with $\alpha + \beta \leq 1$, if $A_{(\alpha,\beta)}$ and $B_{(\alpha,\beta)}$ are equivalent subsets in M, then A and B are equivalent.

Proof. Let $A_{(\alpha,\beta)}$ and $B_{(\alpha,\beta)}$ be equivalent subsets of M for every $\alpha, \beta \in (0, 1]$ with $\alpha + \beta \le 1$. Then $\langle A_{(\alpha,\beta)} \rangle = \langle B_{(\alpha,\beta)} \rangle$ where $A_{(\alpha,\beta)} = \{ x \in M : \mu_A(x) \ge \alpha, \nu_A(x) \le \beta \}$ and $B_{(\alpha,\beta)} = \{ x \in M : \mu_B(x) \ge \alpha, \nu_B(x) \le \beta \}$ are subsets of M. We have $\langle A_{(\alpha,\beta)} \rangle = \bigcap \{ C : A_{(\alpha,\beta)} \subseteq C, C \text{ is submodule of } M \}$ and $\langle B_{(\alpha,\beta)} \rangle = \bigcap \{ D : B_{(\alpha,\beta)} \subseteq D, D \text{ is submodule of } M \}.$

Now to show that $\langle A \rangle = \langle B \rangle$, we have to show that $\mu_{\langle A \rangle}(x) = \mu_{\langle B \rangle}(x)$ and $\nu_{\langle A \rangle}(x) = \nu_{\langle B \rangle}(x) \quad \forall x \in M.$ We have from above theorem $\langle A \rangle = (\mu_{\langle A \rangle}, \nu_{\langle A \rangle})$ where $\mu_{\langle A \rangle}(x) = 1$ and $\nu_{\langle A \rangle}(x) = 0$ when x = 0 and When $x \neq 0$, $\mu_{\langle A \rangle}(x) = \vee \{\Lambda_{i=1}^{n} \mu_{A}(x_{i}) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^{n} r_{i}x_{i} = x\}$ and $\nu_{\langle A \rangle}(x) = \wedge \{\vee_{i=1}^{n} \nu_{A}(x_{i}) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \sum_{i=1}^{n} r_{i}x_{i} = x\}.$ Similarly $\langle B \rangle =$ $(\mu_{\langle B \rangle}, \nu_{\langle B \rangle})$ where $\mu_{\langle B \rangle}(x) = 1$ and $\nu_{\langle B \rangle}(x) = 0$ when x = 0 and when $x \neq 0$, $\mu_{\langle B \rangle}(x) = \vee \{\wedge_{j=1}^{m} \mu_{B}(y_{j}) : s_{j} \in R, y_{j} \in M, 1 \leq j \leq m, m \in N, \sum_{j=1}^{m} s_{j}y_{j} = x\}$ and $\nu_{\langle B \rangle}(x) = \wedge \{\vee_{j=1}^{m} \nu_{B}(y_{j}) : s_{j} \in R, y_{j} \in M, 1 \leq j \leq m, m \in N, \sum_{j=1}^{m} s_{j}y_{j} = x\}$. When x = 0 clearly $\langle A \rangle = \langle B \rangle$. When $x \neq 0$, take $r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, j \in N$.

 $\sum_{i=1}^{n} r_i x_i = x. \text{ We let } \alpha = \bigwedge_{i=1}^{n} \mu_A(x_i) \text{ and } \beta = \bigvee_{i=1}^{n} \nu_A(x_i), \text{ then clearly } \alpha + \beta \leq 1.$ So that we get $\mu_A(x_i) \geq \alpha$ and $\nu_A(x_i) \leq \beta \quad \forall i = 1 \text{ to } n, n \in N.$ That is $x_i \in A_{(\alpha,\beta)} \forall i = 1 \text{ to } n, n \in N, \text{which implies } x_i \in \langle A_{(\alpha,\beta)} \rangle \quad \forall i = 1 \text{ to } n, n \in N.$

$$n \in N$$
.

Therefore $\sum_{i=1}^{n} r_i x_i \in \langle A_{(\alpha,\beta)} \rangle$ for $n \in N$, since $\langle A_{(\alpha,\beta)} \rangle$ is a submodule of *M*. Hence $x \in \langle A_{(\alpha,\beta)} \rangle$. Now since $\langle A_{(\alpha,\beta)} \rangle = \langle B_{(\alpha,\beta)} \rangle$, we get $x \in \langle B_{(\alpha,\beta)} \rangle$, so that

there exists $s_j \in R$, $y_j \in B_{(\alpha,\beta)}$, $1 \le j \le m, m \in N$ such that $x = \sum_{j=1}^m s_j y_j$. Since $y_j \in B_{(\alpha,\beta)}$, we get $\mu_B(y_j) \ge \alpha$ and $\nu_B(y_j) \le \beta \quad \forall j = 1 \text{ to } m, m \in N$.

That is $\mu_B(y_i) \ge \wedge_{i=1}^n \mu_A(x_i)$ and $\nu_B(y_i) \le \vee_{i=1}^n \nu_A(x_i) \forall j = 1 \text{ to } m, m \in N.$

This implies that $\wedge_{j=1}^{m} \mu_B(y_j) \ge \wedge_{i=1}^{n} \mu_A(x_i)$ ------(1) and $\vee_{j=1}^{m} \nu_B(y_j) \le \vee_{i=1}^{n} \nu_A(x_i)$ -----(2) where $\sum_{i=1}^{n} r_i x_i = \sum_{j=1}^{m} s_j y_j = x, m \in N, n \in N$.

From (1) we get,

 $\bigvee \{ \bigwedge_{j=1}^{m} \mu_{B}(y_{j}) : s_{j} \in R, y_{j} \in M, 1 \leq j \leq m, m \in N, \Sigma_{j=1}^{m} s_{j} y_{j} = x \} \ge \\ \bigvee \{ \bigwedge_{i=1}^{n} \mu_{A}(x_{i}) : r_{i} \in R, x_{i} \in M, 1 \leq i \leq n, n \in N, \Sigma_{i=1}^{n} r_{i} x_{i} = x \}$ which implies $\mu_{\langle B \rangle}(x) \ge \mu_{\langle A \rangle}(x) \forall x \in M$. Similarly from (2), we get $\nu_{\langle B \rangle}(x) \leq \nu_{\langle A \rangle}(x) \forall x \in M$. Therefore $\langle A \rangle \subseteq \langle B \rangle$. In similar fashion we can show that

 $\langle B \rangle \subseteq \langle A \rangle$. Hence $\langle A \rangle = \langle B \rangle$.

References

- [1] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and systems, 20:87-96, 1986.
- [2] K. T. Atanassov. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and systems, 61:137-142, 1994.

- [3] B. Davvaz, W.A. Dudek, and Y.B. Jun. Intuitionistic fuzzy Hv- submodules. Inform. Sci., 176:285-300, 2006.
- [4] T. W. Hungerford. Algebra. Springer Verlag, 1974.
- [5] K. Hur, S. Y. Jang, and H. W. Kang. Intuitionistic fuzzy subgroupoids. Int. Jl. Fuzzy Logic and Intelligent Systems, 3(1):72-77, 2003.
- [6] J. N. Mordeson and D. S. Malik. Fuzzy Commutative Algebra. World Scientific, 1998. ISBN 981-02-3628-X.
- [7] C.V. Negoita and D.A. Ralescu. Applications of Fuzzy Sets and System Analysis. Birkhauser, Basel, 1975.
- [8] Paul Isaac and Pearly P. John. On intuitionistic fuzzy submodules of a module. Int. Jl. of Mathematical Sciences and Applications, 1(3):1447-1454, September 2011.
- [9] Pearly P. John and Paul Isaac. IFSM's of an *R*-module A study. Int. Mathematical Forum, 7(19):935-943, 2012.
- [10] Zhudeng Wang. *TL*-submodules and *TL*-linear subspaces. Fuzzy Sets and systems, 68:211-225, 1994.