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1.Introduction 
Let ܺ(ݐ) be a stochastic process for ݐ ≥ 0; the  random variable                  ܺ(ݐଶ) −
,ଵݐ] over the interval (ݐ)ܺ is called the increment of the process (ଵݐ)ܺ  ଶ]. A processݐ
ݐ)ܺ is said to be homogeneous if the distribution function of the increment (ݐ)ܺ +
߬) −  depends only on the length ߬ of the interval but is independent of t. Two (ݐ)ܺ
intervals are said to be non – overlapping intervals if they have no common interior 
point. A process ܺ(ݐ) is called a process with independent increments if the 
increments over non – overlapping intervals are independent. A process is said to be 
continuous at the point t if for any > 0 limఛ→଴ ݐ)ܺ|)ܲ + ߬) − |(ݐ)ܺ > (ߝ = 0. a 
process is continuous in an interval [ܤ,ܣ] if it is continuous in every point of  [ܤ,ܣ]. 
 Let ܺ(ݐ) be a homogeneous and continuous process with independent increments 
and let us denote the characteristic function of the increment ܺ(ݐ + ߬) −  by (ݐ)ܺ
,ݑ)݂ ߬). It is known that ݂(ݑ, ߬) is infinitely divisible and that                       ݂(ݑ, ߬) =
,ݑ)݂ 1).  
 Let ܾ be a function defined in [ܤ,ܣ] and ߭ a non – negative function in [ܤ,ܣ]. Let 
us consider for each integer ݊ a subdivision of [ܤ,ܣ] (ࣞ௡)            ܣ = ௡,଴ݐ < ௡,ଵݐ <
⋯… … . . < ௡,௡ݐ = ݊)    ܤ = 1,2, … … . . )  and assume that  

Max
ଵஸ௞ஸ௡

൫ݐ௡,௞ − ௡,௞ିଵ൯ݐ → ݊ ݏܽ                 0 → ∞ 
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 In each subinterval  ൣݐ௡,௞ିଵ, ௡,௞ݐ ௡,௞൧ select a pointݐ
∗  (݇ = 1,2, … . . , ݊). Let us form 

the sums 

ܵ௡ = ෍ܾ
௡

௞ୀଵ

൫ݐ௡,௞
∗ ൯ ቂܺ ቀ߭൫ݐ௡,௞൯ቁ − ܺ ቀ߭൫ݐ௡,௞ିଵ൯ቁቃ 

 
 If the sequence ܵ௡ converges in probability to a random variable ܵ, and is this 
limit is independent of the choice of the subdivision (ࣞ௡) and the points ݐ௡,௞

∗ , then say 
that ܵ is a stochastic integral in the sense of convergence in probability and write   

ܵ = න ൯(ݐ)൫߭ܺ݀(ݐ)ܾ
஻

஺
. 

 
 The following theorem gives a condition ensuring the existence of the stochastic 
integral in the sense of convergence in probability.  
 
Theorem 1.1 
Let ܺ(ݐ) be a homogeneous and continuous process with independent increments 
defined for ݐ ≥ 0. Suppose that the function ܾ is continuous in [ܤ,ܣ] and ߭ is a non – 
decreasing, non – negative and left continuous function in [ܤ,ܣ]. Then the stochastic 
integral 

                                          න ൯(ݐ)൫߭ܺ݀(ݐ)ܾ
஻

஺
                                                                     (1.1) 

 
exists in the sense of convergence in probability and its characteristic function ℎ is 
given by  

                 logℎ(ݑ) =න ݑ)݂ ݃݋݈ ∙ (ݐ)߭݀((ݐ)ܾ
஻

஺
                                                          (1.2) 

 
 Let ܾ and ߭ be as in theorem 1.1. It is well known that there exists a finite Borel 
measure ܸ with support contained in  [ܤ,ܣ] such that 

ܸ((−∞, ((ݐ = ቐ
0 ݐ ݂݅ < ܣ

(ݐ)߭ − (ܣ)߭ ܣ ݂݅ ≤ ݐ ≤ ܤ
(ܤ)߭ − (ܣ)߭ ݐ ݂݅ > ܤ

 

 
 Put 

߭௕(ݐ) = ܸ(ܾିଵ(−∞,  ((ݐ
 
then ߭௕  is a non – decreasing, non – negative and left continuous function. Further we 
put, 

ܥ = min
஺ஸ௧ஸ஻

 (ݐ)ܾ
 
and  

ܦ = max
஺ஸ௧ஸ஻

 (ݐ)ܾ
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 By theorem 1.1 the stochastic integral 

                                                න ൯(ݐ)൫߭௕ܺ݀ݐ
஻

஺
                                                                  (1.3) 

 
exists and its characteristic function ℎଵ is given by 

logℎଵ(ݑ) =න ݑ)݂ ݃݋݈ ∙ (ݐ)௕߭݀((ݐ)ܾ
஻

஺
 

 
by the transform formula for integrals, we have 

න ݑ)݂ ݃݋݈ ∙ (ݐ)߭݀((ݐ)ܾ
஻

஺
= න ݑ)݂ ݃݋݈ ∙ (ݐ)௕߭݀(ݐ

஻

஺
. 

 
Theorem 1.2 
Let ܺ(ݐ),ܾ and ߭ be as in Theorem 1.1. Then the integrals (1.1) and (1.3) are 
identically distributed. 
 
 
2. Representation Theorem 
Theorem 2.1 
Let ܺ(ݐ) be a homogeneous and continuous process with independent increments 
defined for ݐ ≥ 0 and let the Levy canonical representation of the characteristic 
function of ܺ(0)− ܺ(1) be given by ܽ,ܯ,ߪ and ܰ. Let ߭ be a non – decreasing , non 
negative and left continuous function in [ܤ,ܣ]. Then the Levy canonical 
representation for the characteristic function of the stochastic integral 

                                    න ൯(ݐ)൫߭ܺ݀ݐ
஻

஺
                                                                               (2.1) 

 
is given by the following formulas: 

ܽజ = න൫ܽݐ + 1)ݐ − ଶ)൯ݐ
஻

஺

න
ଷݔ

(1 + ଶ)(1(ݔݐ) + (ଶݔ (ݔ−)ܯ)݀  + ((ݔ)ܰ + ;(ݐ)߭݀
ஶ

଴ା

     (2.2) 

జଶߪ = ଶනߪ (ݐ)ଶ݀߭ݐ
஻

஺

                                                                                                        (2.3) 

(ݔ)జܯ = න −ܰ ቀ
ݔ
(ݐ)ቁ݀߭ݐ

୫୧୬ (஻,଴)

୫୧୬ (஺,଴)

+ න ܯ ቀ
ݔ
(ݐ)ቁ݀߭ݐ

୫ୟ୶ (஻,଴)

୫ୟ୶ (஺,଴)

ݔ)                < 0)  (2.4) 

జܰ(ݔ) = න ቀܯ−
ݔ
(ݐ)ቁ݀߭ݐ

୫୧୬ (஻,଴)

୫୧୬ (஺,଴)

+ න ܰቀ
ݔ
(ݐ)ቁ݀߭ݐ

୫ୟ୶ (஻,଴)

୫ୟ୶ (஺,଴)

ݔ)                > 0)  (2.5) 

 
Lemma 2.1 
The function ݃ is an infinitely divisible characteristic function if, and only if, it can be 



388  Dr. T. Vasanthi  and  Mrs. M. Geetha 

 

written in the form 

log݃(ݑ) = ݑܽ݅ +
ଶߪ

2 ଶݑ  + න (ݔ)ܯ݀(ݔ,ݑ)ݎ
ି଴

ିஶ

+ න ,ݑ)ݎ (ݔ
ஶ

ା଴

 (ݔ)ܰ݀

 
where ܽ,ߪ are real constants; M and n are non – decreasing in the intervals (−∞, 0) 
and (0,∞) respectively, with  

(∞−)ܯ = ܰ(∞) = 0 

න (ݔ)ܯଶ݀ݔ < ∞
଴ି

ି∈

   ܽ݊݀ නݔଶ݀ܰ(ݔ) < ∞
∈

଴ା

ߝ ݕݎ݁ݒ݁ ݎ݋݂    > 0 

 
and 
(ݔ,ݑ)ݎ = ݁௜௨௫ − 1− ݔݑ݅) (1 + ⁄(ଶݔ )     (2.6) 

 
Proof of theorem 2.1 
With out loss of generality let us assume that ܣ ≤ 0 ≤  First we assume that there .ܤ
exists a number ݐ଴ > 0 such that ݐ଴ is a point of continuity of ߭ and  
(଴ݐ)߭ − (଴ݐ−)߭ = 0              (2.7) 
 
 The characteristic function of  (2.1) is denoted by h. Then by theorem 1.1 we have  

logℎ(ݑ) =න ݑ)݂ ݃݋݈ ∙ (ݐ)߭݀(ݐ
஻

஺
                                          (2.8) 

 
 Now let us define a function s by 

,ݑ)ݏ ,ݔ (ݐ = −(ݔ,ݐݑ)ݎ ,ݑ)ݎ  (ݔݐ
 
where in view of (2.6) 

,ݑ)ݏ                                        ,ݔ (ݐ =
−1)ݐ݅ ݑଷݔ(ଶݐ

(1 + ଶ)(1(ݔݐ) +  (ଶݔ

 
 Since ݑ)ݏ, ,ݔ (ݐ = ݔ as (ଶݔ)݋ → 0 and ݔ,ݑ)ݏ, (ݐ = ݔ as (1)݋ → ∞ the function ݏ 
is integrable with respect to ܯ and ܰ. By Lemma 2.1 and the definition of ݏ we have, 

log݂(ݐݑ) = ݐݑܽ݅ −
ଶߪ

2 ଶ(ݐݑ)  + න ,ݑ)ݎ) (ݔݐ + ,ݑ)ݏ ,ݔ (ݔ)ܯ݀((ݐ
ି଴

ିஶ

 

+ න൫ݑ)ݎ, (ݔݐ + ,ݔ,ݑ)ݏ ൯(ݐ
ஶ

ା଴

 (2.9)                                                                        (ݔ)ܰ݀

 
 By virtue of (2.8) and (2.9)  let us obtain 

logℎ(ݑ) = නݑܽ݅ (ݐ)ݒ݀ݐ
஻

஺
−
ଶߪ

2 ଶනݑ  (ݐ)ݒଶ݀ݐ
஻

஺
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+න൮ න ,ݑ)ݏ ,ݔ (ݔ)ܯ݀(ݐ
ି଴

ିஶ

+ න ,ݑ)ݏ ,ݔ (ݐ
ஶ

ା଴

൲(ݔ)ܰ݀
஻

஺

            (ݐ)߭݀ 

+න൮ න ,ݑ)ݎ (ݔ)ܯ݀(ݔݐ
ି଴

ିஶ

+ න ,ݑ)ݎ (ݔݐ
ஶ

ା଴

൲(ݔ)ܰ݀
஻

஺

               (ݐ)߭݀ 

 
 Using the definitions of ܽజ and ߪజ we can write this relation in the form 

logℎ(ݑ) = ݅ܽజݐ −
జଶߪ

2 ଶ(ݐݑ)  + න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܯ݀(ݔݐ
ି଴

ିஶ

஻

஺

 

+න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܰ݀(ݔݐ
ஶ

଴ା

஻

஺

                                                                  (2.10) 

 
and in view of (2.7), Let us have  

logℎ(ݑ) = ݅ܽజݐ −
జଶߪ

2 ଶ(ݐݑ)  + න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܯ݀(ݔݐ
ି଴

ିஶ

ି௧బ

஺

 

+ න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܯ݀(ݔݐ
ି଴

ିஶ

஻

௧బ

 

+න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܰ݀(ݔݐ
ஶ

଴ା

௧బ

஺

 

+ න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܰ݀(ݔݐ
ஶ

଴ା

஻

௧బ

                                         (2.11) 

 
 Decomposing the third term on the right – hand side of (2.11) we get for every 
ߝ > 0. 

ܫ = න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܯ݀(ݔݐ
ି଴

ିஶ

ି௧బ

஺

 

= න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܯ݀(ݔݐ
ି଴

ି∈

ି௧బ

஺

+ +න න ,ݑ)ݎ (ݐ)߭݀(ݔ)ܰ݀(ݔݐ
ି∈

ିஶ

௧బ

஺

 

= ଵܫ +  ଶܫ
 
 Applying L’ Hospital’s rule twice we find 
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lim
௫→ஶ

,ݑ)ݎ (ݔݐ
ଶݔ = −

ଶ(ݐݑ)

2  
 
 Hence there is a constant ܥଵ such that for fixed ݑ and ݐ ∈  [଴ݐ−,ܣ]

,ݑ)ݎ| |(ݔݐ ≤  ଶݔଶ(ݐݑ)ଵܥ
 
 Therefore let us get for ܫଵ the estimation (ߝ → 0 +) 

|ଵܫ| ≤ ଶනݑଵܥ (ݐ)ଶ݀߭ݐ

ି௧బ

஺

 න (ݔ)ܯ݀ ଶݔ
଴ି

ି∈

=  (1)݋

 
 Further we can transform ܫଶ in the following way. 

ଶܫ = න න ,ݑ)ݎ ௫݀(ݔ ቆ−ܯ ቀ
ݔ
(ݐ)ቁቇ݀߭ݐ

ஶ

∈

ି௧బ

஺

 

= න ,ݑ)ݎ ௫݀(ݔ

ஶ

∈

න ቀܯ−
ݔ
(ݐ)ቁ݀߭ݐ

ି௧బ

஺

 

 
so let us obtain as ߝ → 0 

ܫ = න ,ݑ)ݎ ݀(ݔ
ஶ

଴ା

ቌන ቀܯ−
ݔ
(ݐ)ቁ݀߭ݐ

ି௧బ

஺

ቍ 

 
 Transforming the fourth, fifth and sixth terms of (2.11) in a similar manner to the 
third one we get 

logℎ(ݑ) = ݅ܽజݐ −
జଶߪ

2 ଶ(ݐݑ)  + න ,ݑ)ݎ ݀(ݔ
ஶ

଴ା

ቌන ቀܯ−
ݔ
(ݐ)ቁ݀߭ݐ

ି௧బ

஺

ቍ 

+ න ݀(ݔ,ݑ)ݎ
଴ି

ିஶ

නܯቀ
ݔ
(ݐ)ቁ݀߭ݐ

஻

௧బ

 

+ න ݀(ݔ,ݑ)ݎ
଴ି

ିஶ

න −ܰ ቀ
ݔ
(ݐ)ቁ݀߭ݐ

ି௧బ

஺

 

+න ,ݑ)ݎ ݀(ݔ
ஶ

଴ା
න ܰቀ

ݔ
(ݐ)ቁ݀߭ݐ

஻

௧బ
 

 
 Finally, using the definition of ܯజ and జܰ , we can rewrite this relation in the 
form, 
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logℎ(ݑ) = ݅ܽజݐ −
జଶߪ

2 ଶ(ݐݑ)  + න ݀(ݔ,ݑ)ݎ
଴ି

ିஶ

(ݔ)జܯ + න ݀(ݔ,ݑ)ݎ
ஶ

଴ା

జܰ(ݔ) 

 
 Let us complete the proof by showing that ܽజ,ߪజ,ܯజ and జܰ satisfy the condition 
of Lemma 2.1. Obviously ܽజ and ߪ௩ଶ are real constants and ߪ௩ଶ ≥ 0. By definition it is 
easily seen that ܯజ and జܰ are non – decreasing in the intervals (−∞, 0) and (0,∞), 
respectively, having the properties 
(∞−)జܯ = జܰ(∞) = 0 
 
 For every ߝ > 0 we obtain the inequality 

නݔଶ݀ జܰ(ݔ)
∈

଴ା

= න ଶݐ
஻

௧బ

න (ݐ)߭݀(ݔ)ଶ݀ܰݔ

∈ ௧⁄

଴ା

+ න ଶݐ
ି௧బ

஺

න (ݐ)߭݀(ݔ)ܯଶ݀ݔ
଴ି

∈ ௧⁄

 

 

≤ න (ݐ)ଶ݀߭ݐ
஻

௧బ

න (ݔ)ଶ݀ܰݔ

∈ ௧బ⁄

଴ା

+ න ଶݐ
ି௧బ

஺

(ݐ)߭݀ න (ݔ)ܯଶ݀ݔ < ∞
଴ି

∈ ௧బ⁄

 

 
 Analogously, let us get 

න (ݔ)జܯଶ݀ݔ < ∞
଴ି

ି∈

 

 
 Then Lemma 2.1 shows he statement provided that (2.7) is valid. 
 Now let us turning to the  general case n which (2.7) need not be true. Put for  
݊ ≥ max (−1/ܣ,  (ܤ/1

߭௡(ݐ) = ቐ
(ݐ)߭ ݐ ݂݅ ≤ −1 ݊⁄

߭(−1 ݊⁄ ) ݂݅ −1 ݊⁄ < ݐ ≤ 1 ݊⁄
(ݐ)߭ ݐ ݂݅ > 1 ݊⁄

 

 
 Obviously , we have 

lim
௡→ஶ

߭௡(ݐ) =  (2.12)                                                                                                    (ݐ)߭
 
and the functions ߭௡ satisfying (2.7) are non – decreasing, non – negative and left – 
continuous. Hence let us can apply the first part of the proof to the stochastic integrals  

    න ൯(ݐ)൫߭௡ܺ݀ݐ
஻

஺
                                                                                                             (2.13) 

 
and obtain representation of  ܽజ೙ జ೙ߪ, జ೙ܯ,  and జܰ೙ by formulas analogous to (2.2) – 
(2.5) using Helly’s second theorem, we get  
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lim
௡→ஶ

න ݑ)݂ ݃݋݈ ∙ (ݐ)߭݀(ݐ
஻

஺
 = න ݑ)݂ ݃݋݈ ∙ (ݐ)߭݀(ݐ

஻

஺
                                        (2.14) 

 
 Because ݈ݑ)݂ ݃݋ ∙  considered as function of t – is continuous and bounded – (ݐ
and by (2.12) the sequence ߭௡ converges weakly to ݒ. Let us denote the characteristic 
function of (2.13) by ℎ௩. In view of theorem 1.1 . relation (2.14) is equivalent 

lim
௡→ஶ

ℎ௡(ݑ)  = ℎ(ݑ)          
 
 Using the known fact that under this circumstance ܽ௩ → ܽజ೙ ௩ߪ, → జ೙ߪ జ೙ܯ, ⇒  ௩ܯ
and జܰ೙ ⇒ ௩ܰ (⇒ stands for weak convergence) the statement follows. 
 
 
3.ON A PROBLEM OF KOLMOGOROV CONCERNING THE 
NORMAL DISTRIBUTION 
The following theorem gives an affirmative answer to a question posed by A. N. 
Kolmogorov. 
 
Theorem3.1 
Let F be an infinitely divisible (i.d.) distribution function and  

(ݔ) ܨ == (ݔ)ߔ = ଵ
√ଶగ

 ∫ ݁௨మ ଶ⁄ ௫ݑ݀ 
ିஶ  for x < 0; then (ݔ) ܨ ≡  (ݔ)ߔ

 
 For the proof  let us start by collecting together several lemmas. 
 
Lemma 3.2 
Let F be i. d. and 

න ݁ି௬௫ (ݔ)ܨ݀  < ݕ      ,∞ > 0.
ஶ

ିஶ

 

 
 Then the Levy representation of ݂(ݐ) =  ∫ ݁௜௧௫ ∞(ݔ)ܨ݀ 

ିஶ  

log݂(݅ݕ) = − ݕܽ +
ଶߪ

2 ଶݕ  + න ,ݕ)ݎ (ݑ)ܯ݀(ݑ
ି଴

ିஶ

+ න ,ݕ)ݎ (ݑ
ஶ

ା଴

 (ݑ)ܰ݀

 
where 

(ݑ,ݕ)ݎ = ݁ି௬௨ − 1 +
ݑݕ

1 +  ଶݑ
 
holds for ݕ > 0. 
 
Lemma 3.3 
Under the assumptions of lemma 3.2 ݈(ݕ݅)݂ ݃݋ increases at least exponentially, if  
(ܷ)ܯ ≢ 0. 
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Proof 
Using the formula 

,ݕ)ݎ (ݑ = ݁ି௬௨ − 1 + ݑݕ − ݕ
ଷݑ

1 +  ଶݑ
 
we obtain for ߟ >  0 

න ,ݕ)ݎ (ݑ
ஶ

ା଴

(ݑ)ܰ݀ = ݕ න (ݑ)ܰ݀ݑ(ݑݕ)݈

ఎ

ାஶ

− ݕ න
ଷݑ

1 + ଶݑ

ఎ

ା଴

(ݑ)ܰ݀ + න (ݑ,ݕ)ݎ
ஶ

ఎ

 (ݑ)ܰ݀

 
where 

݈(߭) = ߭ିଵ(݁ିజ − 1 + ߭) > 0 
 
whence we get the estimation 

න (ݑ,ݕ)ݎ
ஶ

ା଴

(ݑ)ܰ݀ ≥ ݕ− න
ଷݑ

1 + ଶݑ

ఎ

ା଴

(ݑ)ܰ݀ − න (ݑ)ܰ݀
ஶ

ఎ

=  (ݕܽݏ) (ݕ)ఎܮ

 
 Now we choose —∞ < > ݌  > ݍ   0 and assume (ݍ) ܯ  >  Then we .(݌) ܯ 
obtain from lemma 3.2 

log݂(݅ݕ) ≥− ݕܽ +
ଶߪ

2 ଶݕ  + නቆ݁௬|௨| − 1 −
|ݑ|ݕ

1 + (ݑ)ܯଶቇ݀ݑ

௤

௣

+  (ݕ)ఎܮ

 
 This proves the assertion. 
 
Lemma 3.4 
Let 

Φି(ݔ) = ൜2Φ(ݔ), ݔ < 0
1, ݔ > 0 

 
then the corresponding characteristic function (c. f.) is 

φି(ݐ) = ݁ି௧మ ଶ⁄ ቌ1 − ݅ඨ
2
ߨ  න݁௪మ ଶ⁄

௧

଴

 ቍݓ݀ 

 
with the asymptotic behaviour 

φି(݅ݕ) = ݁ି௬మ ଶ⁄ ൫2 + ൫݁ି௬మ݋ ଶ⁄ ൯ ൯  (ݕ → ∞). 
 
Proof 
We have to calculate 
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(ݐ)݂ = ඨ2
ߨ  න݁௜௧௨݁ି௨మ ଶ⁄

଴

ିஶ

ݑ݀  = ඨ2
ߨ  ݁ି௧మ ଶ⁄ න݁ି

ଵ
ଶ(௜௧ି௨)మ

଴

ିஶ

 ݑ݀ 

 
 The second integral can be evaluated by means of contour integration starting with 

0 = න݁ି
ଵ
ଶ(௜௧ିచ)మ  ݀߫

଴

௓

+ න(… … )
௜௧

଴

+ න (… … )
௜௧ା௓

௜௧

+ න (… … )
௓

௜௧ା௓

 

 
and letting ܼ → −∞. Equation (4) is an easy consequence of (3). 
 
Lemma 3.5 
Let መ݂(ݐ) be the c. f. of an i. d. distribution ܨ෠(ݔ). Then ܨ෠(0) = (ߝ)෠ܨ,0 > 0 if and only 
if in the corresponding Levy representation— characterized by  (â,ߪො,ܯ෡ , ෡ܰ) . 
 We have 

ොଶߪ = (ݑ)෡ܯ,0 ≡ ݑ)0 < 0), 

න݀ݑ ෡ܰ(ݑ)
ଵ

ା଴

< ∞, ොܽ + න
ݑ

1 + ଶݑ

ஶ

ା଴

݀ ෡ܰ(ݑ) = 0 

 
 In this case we have 

log መ݂(݅ݕ) = න(݁ି௬௨ − 1)
ஶ

ା଴

݀ ෡ܰ(ݑ) 

 
Proof 
Putting (ݔ)ܩ = −(ݔ) ܨ2 < ݔ,1  0, we represent ܨ by 

(ݔ)ܨ =
1
2

[Φି(ݔ) +  .[(ݔ)ܩ
 
 We denote the c. f. of (ݔ)ܩ by ݃(ݐ) with the property ݃(݅ݕ) < ݕ) 1 >  0) and 
obtain by lemma 3 

log݂(݅ݕ) = න ݁ି௬௫ (ݔ)ܨ݀ 
ஶ

ିஶ

=
1
2

(ݕ݅)ି߮] + [(ݕ݅)݃ = ݁௬మ ଶ⁄ ൣ1 + ܱ൫݁ି௬మ ଶ⁄ ൯൧ 

 
i.e 

log݂(݅ݕ) =
ଶݕ

2 + ܱ൫݁ି௬మ ଶ⁄ ൯ 
 
 By lemma 1 we also have the representation (1). We are going to compare the 
asymptotic (ݕ → ∞) behaviour of (1) and (5). From Lemma 2 we immediately get the 
conclusion (ݑ)ܯ ≡ ݑ )0 < 0 ). 
 



Representation of Stochastic Process by Means of Stochastic Integrals 395 

 

 So we have to direct our attention to the function ܰ (ݑ) (ݑ >  0), which always 
has the property 

නݑଶ݀ܰ(ݑ) < ∞.
ଵ

ା଴

 

 
 We have to consider two cases. 

(ݑ)ܰ݀ݑන                                                         (ߙ   < ∞.
ଵ

ା଴

 

 
 The function ݈(ݑ) in (2) is increasing, hence, putting  

(ݑ)ܪ = න߭݀ܰ(߭)(ܰ(0+)ܪ:ܤ = −∞)
௨

ଵ

, 

 
 We have for ߟ > 0 

ܴఎ(ݕ) =:න (ݑ)ܰ݀ݑ(ݑݕ)݈ > න ܪ݀(߭)݈ ൬
߭
൰ݕ

௬ആ

ଵ

ఎ

଴

 ≥ ݁ିଵ[(ߟ)ܪ −  [(ଵିݕ)ܪ

 
 Therefore, by assumption ߙ), lim௬→∞ ܴఎ(ݕ) = ∞. Now we conclude from (1) and  

log (ݕ݅)݂ =
ଶߪ

2 ଶݕ  + ݕ ቎−ܽ + ܴఎ(ݕ)− න
ଷݑ

1 + ଶݑ

ఎ

ା଴

(ݑ)ܰ݀ + න
ݑ

1 + ଶݑ

ஶ

ఎ

቏(ݑ)ܰ݀ + 

න(݁ି௬௨ − 1)
ஶ

ఎ

(ݑ)ܰ݀ =
ଶߪ

2 ଶݕ  + 1)(ݕ)ఎܴݕ +  ((1)݋

 
 This formula must be compared with (5). 
 Let us first assume that lim௬→∞ (ݕ)ଵܴఎିݕ = 0. Then it follows ߪ = 1, and we 
have the contradiction 

(ݕ)ఎܴݕ = ܱ൫݁ି௬మ ଶ⁄ ൯ 
 
 On the other hand, if we have 

lim
௬→∞

(ݕ)ଵܴఎିݕ = ݈ఎ > 0, 

 
then we get 

ଶߪ

2 + ݈ఎ =
1
2 

 
 Now we note that (as ݈(ݒ)ିݒଵ < с,∀ ݒ >  0) 
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(ݕ)ఎܴݕ = ଶݕ නቈ
(ݑݕ)݈
ݑݕ

቉

ఎ

ା଴

(ݑ)ଶ݀ܰݑ ≤ ଶݕܿ නݑଶ ݀ܰ(ݑ),

ఎ

ା଴

 

 
 Therefore ݈ఎ can be made arbitrarily small. 
 Hence we again obtain ߪ = 1 and the wrong equation (6). So assumption ߙ) is 
false. 

(ݑ)ܰ݀ݑන                                                         (ߚ < ∞.
ଵ

ା଴

 

 
 In this case (1) yields 

log (ݕ݅)݂ =
ଶߪ

2 ଶݕ  + ݕ ቎−ܽ + න
ݑ

1 + ଶݑ

ஶ

ఎ

቏(ݑ)ܰ݀ + ܵఎ(ݕ) + න(݁ି௬௨ − 1)
ஶ

ఎ

 (ݑ)ܰ݀

 
where 

ܵఎ(ݕ) = න(݁ି௬௨ − 1)

ఎ

ା଴

(ݑ)ܰ݀ = ݕ න
݁ି௬௨ − 1

ݑݕ

ఎ

ା଴

݀ න (ݑ)ܰ݀߭
௨

ା଴

 

 
 The integrand is increasing, i. e. 

ݕ− න߭݀ܰ(ݑ)

ఎ

ା଴

≤ ܵఎ(ݕ) ≤ 0 

 
 Comparing (7) and (5), we now immediately obtain ߪ = 1 and 

൥−ܽ + න
ݑ

1 + ଶݑ

ஶ

ା଴

+൩(ݑ)ܰ݀
1
ݕ ܵఎ

(ݕ) = ܱ൫݁ି௬మ ଶ⁄ ൯ 

 
 Putting 

lim
௬→∞

(ݕ)ଵܵఎିݕ =  ఎݏ

 
we get from (9) 

൥−ܽ + න
ݑ

1 + ଶݑ

ஶ

ା଴

+൩(ݑ)ܰ݀ ܵఎ = 0 

 
 But (8) shows, thatหܵఎห ≤ ∫ ఎ(ݒ)ܰ݀ݒ

ା∞  can be chosen arbitrarily small. Therefore 

൥−ܽ + න
ݑ

1 − ଶݑ

ஶ

ା଴

൩(ݑ)ܰ݀ = 0 
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 From Lemma 4 and (7) we now conclude that 

(ݕ݅)݂ = ݁
ఙమ
ଶ  ௬మ መ݂(݅ݕ) 

 
where መ݂(ݐ)  is the c. f. of a distribution function ܨ෠(ݔ) with ܨ෠(0) = (ߝ)෠ܨ,0 > 0. 
 In view of (5) this is possible only for መ݂(݅ݕ) ≡ 1, i. e. ෡ܰ(ݑ) = (ݑ)ܰ ≡ 0. Finally 
we obtain ܽ = 0 from (10). The proof is complete. 
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