On Quasi Weak Commutative Near – Rings

Dr. G. Gopalakrishnamoorthy¹, Dr. M. Kamaraj² and S. Geetha³

 ¹Advisor, PSNL College of Education, Sattur – 626 203. Email: ggrmoorthy@gmail.com
 ²Associate Professor, Government Arts and Science College, Sivakasi – 626 124
 ³Department of Mathematics, Pannai College of Engg&Tech Keelakandani,Sivaganga Dist-630 561. Email: geethae836@gmail.com.

Abstract:

A right near - ring N is called weak Commutative, (Definition 9.4 Pilz [7]) if xyz = xzy for every x,y,z ϵ N. A right near - ring N is called pseudo commutative (Definition 2.1, S.Uma and others [8]) if xyz = zyx for all x,y,z ϵ N.It is quite natural to investigate the properties of N if xyz = yxz for every x,y,z ϵ N.We call such a near - ring as quasi weak commutative. We obtain some interesting results on Quasi weak commutative near - ring.

1.Introduction:

Throughout this paper, N denotes a right near – ring (N,+, .) with atleast two elements. For any non-empty subset A of N,we denote $A - \{0\} = A^*$. The following definitions and results are well known.

Definition: 1.1

An element $a \in N$ is said to be

- 1. Idempotent if $a^2 = a$.
- 2. Nilpotent, if there exists a positive integer k such that $a^k = 0$.

Result : 1.2 (Theorem 1.62 Pilz [7])

Each near - ring N is isomorphic to a subdirect product of subdirectly irreducible near - rings.

Definition : 1.3

A near – ring N is said to be zero symmetric if ab = 0 implies ba = 0, where $a, b \in N$.

Result: 1.4

If N is zero symmetric, then

- 1. Every left ideal A of N is an N subgroup of N.
- 2. every ideal I of N satisfies the condition NIN \subseteq I. (i.e) every ideal is an N subgroup.
- 3. $N^*I^*N^* \subseteq I^*$.

Result :1.5

Let N be a near – ring. Then the following are true

- 1. If A is an ideal of N and B is any subset of N, then (A: B) = { $n \in N$ such that $nB \subseteq A$ } is always a left ideal.
- 2. If A is an ideal of N and B is an N subgroup, then (A: B) is an ideal. In particular if A and B are ideals of a zero symmetric near ring, then (A : B) is an ideal.

Result: 1.6

- 1. Let N be a regular near ring, $a \in N$ and a = axa, then ax,xa are idempotents and so the set of idempotent elements of N is non empty.
- 2. axN = aN and Nxa = Na.
- 3. N is S and S' near rings.

Result: 1.7 (Lemma 4 Dheena [1])

Let N be a zero - symmetric reduced near - ring. For any a,b \in N and for any idempotent element e \in N, abe = aeb.

Result: 1.8 (Gratzer [4] and Fain [3])

A near - ring N is sub - directly irreducible if and only if the intersection of all non - zero ideals of N is not zero.

Result: 1.9 (Gratzer [4])

Each simple near – ring is sub directly irreducible.

Result : 1.10 (Pilz [7])

A non - zero symmetric near – ring N has I F P if and only if (O:S) is an ideal for any subset S of N.

Result : 1.11 (Oswald [6])

An N - subgroup A of N is essential if $A \cap B = \{0\}$, where B is any N subgroup of N, implies $B = \{0\}$.

Definition : 1.12

A near - ring N is said to be reduced if N has no non-zero nilpotent elements.

Definition : 1.13

A near - ring N is said to be an integral near - ring, if N has no non - zero divisors.

Lemma: 1.14

Let N be a near-ring. If for all a ε N, $a^2 = 0 \Rightarrow a = 0$, then N has no non-zero nilpotent elements.

Definition : 1.15

Let N be a near-ring. N is said to satisfy intersection of factors property (IFP) if ab = 0 = ab = 0 for all $n \in N$, where $a, b \in N$.

Definition : 1.16

- 1. An ideal I of N is called a prime ideal if for all ideals A,B of N, AB is subset of I => A is subset of I or B is subset of I.
- 2. I is called a semi-prime ideal if for all ideals A of N, A² is subset of I implies A is subset of I.
- 3. I is called a completely semi prime ideal, if for any $x \in N$, $x^2 \in I \Longrightarrow x \in I$.
- 4. A completely prime ideal, if for any x, y \in N, xy \in I => x \in I or y \in I
- 5. N is said to have strong IFP, if for all ideals I of N, ab ϵ I implies anb ϵ I for all n ϵ N.

Result: 1.17 (Proposition 2.4 [8])

Let N be a Pseudo commutative near - ring. Then every idempotent element is central.

2. Definition and Basic Properties

In this section we introduce the concept of quasi weak commutative near – rings.

Definition :2.1

A near – ring N is said to be quasi weak commutative near – ring if xyz = yxz for all x, y, z \in N.

Every commutative near - ring is quasi weak commutative.

Proposition:2.2

Every quasi weak commutative near - ring is zero symmetric.

Proof:

Let N be a quasi weak commutative near – ring.

For every $a \in N$, a.0 = a(00) = (0a)0 = 00 = 0. This proves N is zero symmetric.

Proposition:2.3

Let N be both weak commutative and quasi weak commutative right near – ring. Then N is pseudo commutative.

Proof:

For all x, y, $z \in N$, we have

xyz = yxz (N is quasi weak commutative)

= yzx (N is weak commutative)

= zyx (N is quasi weak commutative)

This proves N is pseudo commutative.

Proposition:2.4

Homomorphic image of a quasi weak commutative near – ring is also right pseudo commutative near – ring.

Proof:

Let N be a quasi weak commutative near – ring and f: N \rightarrow M be an Endomorphism of near – rings.

For all x, y, z \in N. f(x)f(y)f(z) = f(xyz) = f(yxz)= f(y)f(x)f(z)

This proves M is quasi weak commutative.

Corollary:2.5

Let N be a quasi weak commutative near – ring. If I is any ideal of N, then N/I is also quasi commutative.

Theorem:2.6

Every quasi weak commutative near – ring N is isomorphic to a sub-direct product of sub-directly irreducible quasi weak commutative near – rings.

Proof:

By Result 1.2, N is isomorphic to a sub-direct product of sub-directly irreducible near – rings N_k, and each N_k is a homomorphic image of N, under the projection map π_k : N \rightarrow N_k. The desired result follows from Proposition 2.7.

Proposition:2.7

Any weak commutative near ring with left identity is a quasi weak commutative near – ring.

Proof:

Let $e \in N$ be a left identity.

For any a,b,c
$$\in$$
 N
abc = e(abc)
= (eab)c
= (eba)c
= bac

So N is quasi weak commutative near – ring.

Proposition:2.8

Any quasi weak commutative near – ring with right identity is weak commutative.

Proof:

Let a, b, c \in N and e ϵ N be a right identity.

Then

(-1)	_	(-1)-	
(abc)	=	(abc)e	
	=	a(bce)	
	=	a(cbe)	(quasi weak commutative)
	=	(acb)e	
	=	acb	

This proves N is weak commutative.

Theorem:2.9

Let N be a regular quasi weak commutative near - ring. Then

- 1. $A = \sqrt{A}$, for every N sub-group A of N
- 2. N is reduced
- 3. N has (*IFP)

Proof:

Since N is regular, for every a ϵ N, there exists b ϵ N such that

$$a = aba$$
Now
$$a = aba (ba)a$$

$$a = ba2$$
(1)
(2)

1. Let A be a N-subgroup of N and a $\epsilon \sqrt{A}$

Then $a^k \epsilon A$ for some positive integer k.

Now from (2) $a = ba^2 = b(a)a$ $= b(ba^2)a$ $= b^{2}a^{3}$ $= b^{2}a(a^{2})$ $= b^{2}(ba^{2})a^{2}$ $= b^{3}a^{4}$ $= b^{(k-1)}a^{k}\varepsilon \text{ NA which is a subset of A.}$ Therefore \sqrt{A} is a subset of A. Obviously A is a subset of \sqrt{A} . This completes the proof of (i). 1. If $a^{2} = 0$, then by (2) $a = ba^{2} = b0 = 0$. This completes the proof of (ii). 2. Let ab=0.

Then $(ba)^2 = (ba)(ba) = b(ab)a = b(0a) = b.0 = 0$ (Proposition 2.2) So, by (ii) ba = 0

Now for any n ε N,

 $(anb)^{2} = (anb)(anb)$ = an(ba)nb = (an)0(nb) = 0

Again by (ii) anb = 0 This proves (iii).

Theorem:2.10

Let N be a regular quasi weak commutative near – ring. Then every N subgroup is an ideal

- 1. N = Na = Na² = aN = aNa
- 2. for all $a \in N$

Proof:

Let $a \in N$. Since N is regular a = aba for some $b \in N$. By Result 1.6 ba is an idempotent element. Let ba = eThen Ne = Nba = Na (by Result 1.6) (1) Let S = { n-ne/ n $\in N$ }. We Claim that (O:S) = Ne. Now (n-ne)e = ne-ne² = ne-ne = 0 for all $n \in N$.

So,
$$(n-ne)Ne = 0$$
 (by (ii) of Theorem 2.9).
This implies $Ne \subseteq (O:S)$.
Now let $y \in (O:S)$. Then $sy = 0$ for all $s \in S$. (2)

436

Since N is regular, y = yxy for some $x \in N$.

Since $yx - (yx)e \in S$, (yx - (yx)e)y = 0 (by (1)) (ie) yxy - yxey = 0 y - y(xey) = 0 y - y(xye) = 0 y - yxye = 0 y - ye = 0(ie) $y = ye \in Ne$.

It follows that $(O:S) \subseteq Ne$ From (1), (2) and (3) we get (O:S) = Ne = Na. By Result 1.10, Na is an ideal of N.

Now if M is any subgroup of N, then $M = \sum_{a \in M} Na$

Thus M becomes an ideal of N.

(2) Since N is regular, for every $a \in N$, there exists $b \in N$ such that a = aba = (ba)a (R is quasi weak commutative) $a = ba^2 \in Na^2$ So, $N \subseteq Na^2$ (4)

Now

$$Na \subseteq N \subseteq Na^{2} \subseteq (Na)a \subseteq Na \subseteq N$$

implies
$$Na = Na^{2} = N$$
 (5)

Now, we shall prove $Na^2 = aNa$ Let $x \in Na^2$.

na² Then for some n ε N Х = = naa = (Since R is quasi weak commutative) ana So, e aNa. Х (ie) $Na^2 \subseteq aNa$ (6)

Let $y \in aNa$. Then y = ana for some $n \in N$ = (na)a (Since R is quasi weak commutative) $= na^2 \in Na^2$

(ie) $aNa \subseteq Na^2$

Hence

$$aNa = Na^2$$
(8)

(3)

(7)

(12)

We claim that aN = aNa. Since Na is an ideal (by (i)), for every $a \in N$, (Na) $N \subseteq Na$ (9)

Also for every $n \in N$, an = (aba)n = a(ban) \in a(NaN) \subseteq aNa (using (9))

Thus $aN \subseteq aNa$ (10)

Obviously $aNa \subseteq aN$ (11)

Hence aN = aNa

Thus from (5), (8) and (12) we get $N = Na = Na^2 = aN = aNa$ for all $a \in N$.

Definition:2.11

A near – ring N is said to have property P₄, if ab $\in I \Rightarrow$ ba $\in I$, where I is any ideal of N

Theorem:2.12

Let N be a regular quasi weak commutative near - ring. Then

- 1. Every ideal of N is completely semi prime
- 2. N has property P₄

Proof:

а

Let I be an ideal of N.

1. Let $a^2 \in I$.

Since N is regular,

= aba for some b ∈ N= baa (since N is quasi weak commutative) = ba² ∈ NI ⊂ I ⇒ a² ∈ I ⇒ a ∈ I

So every ideal of N is completely prime.

2. Let $ab \in I$.

 $\begin{array}{ll} Then \ (ba)^2 \ = \ (ba)(ba) \ = \ b(ab)a \ \varepsilon \ N \ I \ N \ \subseteq \ I \qquad (\ by \ result \ 1.4 \) \\ Then \ by \ (i) \ ba \ \varepsilon \ I. \\ Thus \ ab \ \varepsilon \ I \ \Longrightarrow \ ba \ \varepsilon \ I. \\ Thus \ N \ has \ prtoperty \ P_4. \end{array}$

Theorem:2.13

Let N be a quasi weak commutative near – ring.For every ideal I of N, (I:S) is an ideal of N where S is any subset of N.

438

Proof:

Let I be an ideal of N and S be any subset of N. By Result 1.5 (ii), (I:S) = { n ∈ N / nS ⊆ I} is a left ideal of N Let s ∈ S, and a ∈ (I:S), then as ∈ I. Since N has proprty P₄, sa ∈ I. Then for any n ∈ N, (sa)n ∈ I (ie) s(na) ∈ I This implies (an)s ∈ I (N has property P₄)
(ie) an ∈ (I:S) for any n ∈ N and hence (I:S) is a right ideal. Consequently (I:S) is an ideal. This completes the proof.

Proposition:2.14

Let N be a quasi weak commutative near – ring. For any ideal I of N, and $x_1, x_2, x_3, \dots, x_n \in N$, If $x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n \in I$, then $\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle \dots \langle x_n \rangle \subseteq I$.

Proof:

Let $x_1 . x_2 . x_3 x_n \in I$. $\Rightarrow x_1 \in (I : x_2 . x_3 x_n)$ $\Rightarrow \langle x_1 \rangle \subseteq (I : x_2 . x_3 x_n)$ $\Rightarrow \langle x_1 \rangle x_2 . x_3 x_n \subseteq I$ (By proposition2.12) $\Rightarrow x_2 \in (I : x_3 x_n \langle x_1 \rangle)$ $\Rightarrow \langle x_2 \rangle \subseteq (I : x_3 x_n \langle x_1 \rangle)$ $\Rightarrow \langle x_2 \rangle x_3 x_4 x_n \langle x_1 \rangle \subseteq I$ $\Rightarrow x_3 x_4 x_n \langle x_1 \rangle \langle x_2 \rangle \subseteq I$ Continuing like this we get $\langle x_1 \rangle \langle x_2 \rangle \langle x_n \rangle \subseteq I$

Proposition:2.15

Let N be a quasi weak commutative near - ring. Then

1. N has strong IFP

2. N is semi – prime near - ring

Proof:

1. Let I be an ideal of N. Since N is zero symmetric, NI \subseteq I. By Theorem 2.10 (ii), aN = Na². Hence an = ma² for some m, n \in N. Hence, if ab \in I, then for every n \in N, anb = ma²b = (ma)ab \in NI \subseteq I

(ie) ab $\in I \Rightarrow$ anb $\in I$ for all $n \in N$.

This proves N has strong IFP.

2. Let M be an N subgroup of N. Then M is an ideal by Theorem 2.10 (i) Let I be any ideal of N such that $I^2 \subseteq M$.

Then by Result 1.4 NI \subseteq I. If $a \in I$, then a = aba for some $b \in N$ (N is regular) $\Rightarrow a = aba \in I(NI) \subseteq I^2 \subseteq M$.

So, any N- subgroup M of N is a semi – prime ideal. In particular $\{0\}$ is a semi – prime ideal and hence N is a semi – prime near – ring

References

- [1] Dheena P. On strongly regular near rings, Journal of the Indian Math.Soc., 49(1985), 201 208.
- [2] Dheena P.A note on a paper of Lee, Journal of Indian Math.Soc., 53(1988), 227 229.
- [3] Fain, Some Structure theorems for near rings, Doctoral dissertation, University of Oklanama, 1968.
- [4] Gratzer.George, Universal Algebra, Van Nostrand, 1968.
- [5] Henry E. Heartherly, Regular Near rings, Journal of Indian Maths.Soc,38(1974),345-354.
- [6] Oswald A.Near rings in which every N subgroup is principal, Proc. London Math.Soc, 3 (1974), No 28, 67 88.
- [7] Pliz . Giinter, Near rings, North Holland, Aneterdam, 1983.
- [8] Uma.S, Balakrishnan.R and Tamizh chelvam.T, Pseudo Commutative near rings, Scientia Magna, 6(2010) No 2, 75 85.

440