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Abstract 
 

Let y0 (w) , y1 (w) , …, yn (w) be a sequence of independent random variables 
with mathematical expectation zero and variance one. We show that the 
polynomial ∑ ୀݕ k (w) ψk (t) , where ψk (t) is the normalized orthogonal 
ultraspherical polynomial, has n/√3 real zeros for large values of n.  
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1.Introduction 
Let fn (t) = ∑ ܾݕୀ k (w) ߶k (t) be a random polynomial, where y0 (w) , y1 (w) , … yn 
(w) is a sequence of mutually independent, normally distributed random variables 
with mathematical expectation zero and variance one ; (߶0 (t) , ߶1 (t) , …) is a 
sequence of real valued polynomials (functions) and (b0, b1, …) a sequence of real 
constants. Kac [4 ] showed that, when bk=1 and ߶k (t) =tk, the expected number of 
times the random polynomial fn (t) crosses the t- axis is asymptotic to nlog)/1( π . 
When b0=0, bk=1 for k≠0 and ߶k (t) = cosk (cosିଵ  J.E.A. Dunnage [2] estimated , (ݐ
that the expected number of crossings of fn (t) is asymptotic to 2n/√3 in the interval (-
1, 1) .  
 It is interesting to observe that while tk, s are a set of functions monotonic in (-∞, 
0]and [0, ∞) , cosk (cosିଵ  for each k, oscillates k times between -1 and 1. The fact  (ݐ
that the average number of zeros of y=0 when ߶k (t) = cosk (cosିଵ  is proportional (ݐ
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to the number of individual oscillations of ߶k (t) about the t-axis, draws attention to 
the question as to how far the oscillatory nature of  (ݐ) decisively affects the zeros 
of y=o. Although the answer remains still inconclusive, we attempt to show that for 
large n, the above equation may be expected to have c.n, (c>0) number of real roots 
when ߶k (t) happens to be the ultraspherical classical orthogonal Gegebauer 
polynomial. In other words the oscillatory property of ߶n (t) is also shared by ∑ ୀݕ k 
(w) bk߶k (t) . It was Das[1] who first initiated the work on Random Orthogonal 
polynomial. Taking bk߶k (t) as normalized orthogonal Legendre Polynomial, he 
showed that expected number of real zeros of the polynomial is asymptotic to n/√3) . 
Das’s polynomial can be considered as a special case of our polynomial f୬(t). 
 Now, ߶k (t) is associated with a weight function u (t) = (1-t2) -1/2, t>1/2 
corresponding to the interval (-1, 1) over which the integral of u (t) ߶k

2 (t) is a positive 
number hk .We take bk=hk

1/2.Then the integral of ψk
2 (t) =bk

2߶k
2 (t) over the given 

interval is unity, so that each of the terms of the polynomial ∑ ୀݕ k (w) ψk (t) 
= ∑ ୀݕ k (w) bk߶k (t) has same weightage in the same sense.  Thus, in what follows, we find the average number of zeros of the equation   f୬(t) =  ∑ ୀݕ k (w) ψk (t) =0.  (1.1)  
 
 Let ENn (α, β) denote the expected number of real zeros of fn (t) in (α, β) . We 
prove the following theorem 
 
THEOREM: If {yk (w) }n

k=0 is a sequence of mutually independent, normally 
distributed random variables with mean zero and variance unity;. Then 

 
.

3
~),( nENn ∞−∞  

 
 
2. FORMULA FOR ENn (α, β)  
Following the procedure of Kac [4 ], we obtain  

 ENn (f;a, b) =ଵగ  ൣሼ (௧) ሽሼ (௧) ሽିሼ (௧) ሽమ൧భ/మ(௧)   (2.1)   ݐ݀
 
where  
 Xn (t) =Xn=∑ [߰ୀ  (t) ]2 

 Yn (t) =Yn=∑ [߰ୀ  (t) ][ψ'k (t) ] 
 Zn (t) =Zn=∑ [߰Ԣୀ  (t) ]2 

 
provided that XnZn-Yn >0 which holds good by Cauchy's inequality. 
 Let us put µk=rnhn

-1rn+1
-1 where ݎ is the coefficient of ݐ ݅݊ ߶ (t) .The famous 

Christofell-Darboux formula ([3], p.159) of the theory of orthogonal functions reads 
as follows : 
 ∑ ݄ି ଵୀ ߶ (µ) ߶ (ݐ) =μ  ሼథశభ(ஜ)థ(௧)ିథ(ஜ)థశభ(௧)ሽஜି௧    (2.2)  
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 Putting µ=t+γ, expanding both the sides of (3.1.3) by Taylor’s series and equating 
the coefficients of γ we obtain that 
  ∑ [߰ୀ k (t) ]2= ∑ ݄ୀ k

-1 [߶k (t) ]2=µn[߶n+1' (t) ߶n (t) -߶n+1 (t) ߶n' (t) ],   (2.3)   ∑ [߰(ݐ)][߰ᇱୀ  (t) ] = ∑ ݄ି ଵୀ ᇱ k    (t)]  (t) ] =ఓଶ ାଵᇱᇱ]  ((t)  (t) -߶n+1 (t) ᇱᇱ (t) ],   (2.4)   ∑ ݄ି ଵୀ [߶k (t) ᇱᇱ (t) ]=ఓଷ ାଵᇱᇱ]  (t) ߶n (t) -߶n+1 (t) ᇱᇱᇱt) ]    Differentiating (2.4) , we get    ∑ ݄ି ଵୀ ᇱ] ଶ (t) +ᇱᇱ (t)  (t) ]=ఓଶ ାଵᇱᇱᇱ]  (t)  (t) +ᇱ  (t) ାଵᇱᇱ  (t) -ାଵᇱ  (t) ᇱᇱ (t) -ᇱᇱᇱ (t) ାଵ (t) ].    Therefore,   ∑ ݄ି ଵୀ ᇱ] ଶ (t) =∑ [߰ᇱୀ  (t) ]2=ఓଶ ାଵᇱᇱ]  (t) ᇱ  (t) -  ାଵᇱ ᇱᇱ (t) ]+ఓ (ݐ)  ାଵᇱᇱᇱ]  (t) ߶n (t) -߶n+1 (t) ᇱᇱᇱ (t) ].   (2.5)   Thus  
 ENn (f, a, b) =ଵగ  ݃  (t) dt,   (2.6)   where 
 g2

n (t) =ቂௐ(௧)ା (௧) ோ െ మ (௧) ସோ మ  (௧) ቃ,  
 Rn (t) =ାଵᇱ  (t)  (t) -ାଵ (t) ᇱ  (t) , Un (t) =ାଵᇱᇱ  (t)  (t) -ାଵ (t) ᇱᇱ (t) ,  
  Vn (t) =1/2[ାଵᇱᇱ  (t) Ԣ (t) -ାଵᇱ  (t) ᇱᇱ (ݐ) ] and Wn (t) =1/6[ାଵᇱᇱᇱ  (t) Ԣ (t) - 
 .[ (ݐ) ᇱᇱ ାଵ (t) 
 
 
3.Proof of the theorem 
For the sake of convenience for proving the theorem, we break up the interval (-1, 1) 
into three sub intervals namely (i) (-1+Є, 1+Є) , (ii) (-1, -1+Є) , and (iii) (1-Є, 1) . We 
choose Є=n-1/ (4+δ) .  
 In the section 3.1, we find out the average number of zeros in the first interval. In 
the section 3.2 We prove that the number of zeros in the other two intervals are 
negligible in comparison to those in the interval (i) . 
 
EXPECTED NUMBER OF ZEROS IN THE INTERVAL (-1+Є, 1-Є)  
From [17, ], We have 
  (1-t2) ᇱᇱ (t) = (2λ+1) tᇱ  (t) -n (n+2λ) ߶n (t)   (3.1)  
 
 Thus  
 2 (1-t2) Vn (t) =n (n+2λ) Rn (t) - (2n+1+2λ) ߶n+1 (t) ᇱ  (t) ,   (3.2)  
  (1-t2) Un (t) = (2λ+1) t Rn (t) - (2n+1+2λ) ߶n+1 (t) ߶n (t) .   (3.3)  
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 Differentiating (3.1) we have   -2tᇱᇱ (t) + (1-t2) ᇱᇱᇱ (t) = (2λ+1) ᇱ  (t) + (2λ+1) tᇱᇱ (t) -n (n+2λ) ᇱ  (t) .    Therefore it is easy to derive that   6 (1-t2) Wn (t) =(2ߣ + ݐ(3 ቂ(ଶఒାଵ)௧(ଵି୲మ) Rn (t)  െ (ଶାଵାଶఒ)(ଵି௧మ) ାଵᇱ   ቃ (ݐ) (ݐ)
ߣ2)]+  + 1) െ ݊(݊ +   Rn (t)[(ߣ2
 +(ଶାଵାଶఒ) (ଵି௧మ) ݊)ൣ  (t) + (ݐ)ାଵݐ(1 െ ൫െ(2ߣ + 1)൯ (ݐ) ൧ .   (3.4)  
 
 From [17, p . 279], we have  
 (1 െ ାଵᇱ (ଶݐ ( (ݐ)  = ߣ2) + (ݐ)(݊ െ   (ݐ) ାଵݐ
 
 Therefore  
  (1 െ =   (ݐ) ଶ)ܴݐ ߣ) + ଶ(݊ (ݐ) െ (ݐ)(ݐ)ାଵݐ െ ߣ2) + 1 +   (3.5)   .(ݐ)ିଵ(ݐ)ିଵ(݊
 
 Gegenbauer polynomials can be considered as a special case of the Jacobi 
Polynomial ܲ (ఈ,ఉ)  (t) , where ߙ = ߚ = ߣ െ ଵଶ (see Szego[5 ] page 80].For large n, We 
shall use the asymptotic estimate of ߶n (t) as   ߶n (t) ~ ଶഊ (గ) భ/మ  (1 െ షഊమ (ݐ  (1 + షഊమ (ݐ ቂܿ߯ݏ + )  ଵ ௦ఏ) ቃ,   (3.6)  
 
where χ= (nѳ+λѳ-λπ/2) and t=cos ߙ We have taken) .ߠ = ߚ = ߣ െ ଵଶ in asymptotic 

estimate of ܲ (ఈ,ఉ)  (Szego[ 5] page 190)  
 Hence from (3.5) and (3.6) we have  

 ܴ (t) = ଶమഊగ (ଵି௧మ)  (1 െ ఒ (1ି (ݐ + ఒି (ݐ  (1 െ (ଶݐ  +  ቂ ଵ௦ѳቃ൨  
 
 It is easy derive from (3.6) that  
మ , (௧) ோ (௧) =oቀଵቁశభ(௧)   (௧) ோ (௧) =oቀଵቁ and ᇲ (௧)శభ (௧) ோ  (௧) = 0 ቀ ଵ (ଵି௧మ) ቁ.  
 
 Therefore, from (3.2) and (3.4) we have  
  (௧) ோ(௧)= (ାଶఒ) ଶ (ଵି௧మ) - (ଶାଵାଶఒ) ଶ (ଵି௧మ) శభ(௧)ᇲ  (௧) ோ(௧) = మଶ (ଵି௧మ) +0ቀ  (ଵି௧మ) మቁ,  

  ௪ (௧) ோ(௧) =
[ሼ(మഊశయ)(మഊశభ)మభషమ ା(ଶఒାଵ)ି(ାଶఒ)ሽR୬ (୲) ) ିቄ(మశభశమഊ)(మഊశయ)భషమ ି(శభ)(మశభశమഊ)భషమ ቅశభ(௧)(௧)ିሼ(మశభశమഊ)(మഊశభ)మ ()భషమ ሽ][(ଵି௧మ)ோ(௧)] =- 

 మ(ଵି௧మ)+0ቀ (ଵି௧మ)మቁ.  
 
 Thus,  
 ௐ(௧)ା (௧) ோ = మଶ (ଵି௧మ) +0ቀ  (ଵି௧మ) మቁ.  
 
 Also, we can derive from (3.3) that  
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  (௧) ଶோ (௧) =0 ( ଵ (ଵି௧మ) మ) +0ቀ ଵ (ଵି௧మ) మቁ.  
 
  So  

 ݃(ݐ) = ටௐ(௧)ା (௧) ோ (௧) െ మ (௧) ସோమ (௧)  
 = √ଷ(ଵି௧మ)భ/మ ቂ1 + 0 ( ଵ (ଵି௧మ) ) ቃଵ/ଶ

 
 

 For the range (-1+א-1 ,א) , we notice that 1-ݐଶ > 2 א െאଶ=ଶ (రశô) షభ ିଵమ (రశô) షభ , where א= ݊ (ସାô) షభ, as previously specified . Thus (1 െ   .ଶ)ିଵ=0൫݊ (ସାô) షభ൯ݐ
 
 Therefore,  

 ݃ (ݐ) = ටଷ (ଵି௧మ) భమ 1 + 0 (݊ିమశഃరశഃ) ൨. 
 
 Thus from (2.6)  
ܧ  ܰ (݂; െ1+א, 1െא)  
=  గ√ଷ (ଵି௧మ) భమ ݐ݀ 1 + 0 (݊ିమశഃరశഃ) ൨ଵିିאଵାא = √ଷ 1 + 0 (݊ିమశഃరశഃ) ൨  
 as sinିଵ  (1െא) ) ~2/ߨ .  
 Number of zeros in (-1, -1+Є) , and (1-Є, 1) . 
 Here we show that in the ranges (1-1 ,א) and (-1, -1+א) the number of zeros of (1 . 
1) is negligibly small in comparison to those in (െ1 + Є, 1 െ Є).  
 Let  
 f (z) =f (ݕത(ݓ), ∑= (ݖ ୀ,(ݖ)߰(ݓ)ݕ    (3.7)  
 
where ݕത (ݓ) denotes the random vector (ݕ (ݓ) ,  Now f. ( (ݓ) ݕ ,.………… , (ݓ) ଵݕ
,(ݓ)തݕ) 1) =∑ (1)ୀ߰(ݓ)ݕ  is a random variable with mean zero and variance ߪଶ = ∑ ߰ଶ(1)ୀ  ߰ଶ(1)  0and hence has the distribution function ଵ√ଶగఙమ  ݔ݁ ቀି௩మଶఙమቁ௧ିஶ dv.  
 
 Now  

 p (|f (1) | ݁ିଶא)  = ቀ ଶగఙమቁଵ/ଶ  ݔ݁ ቀି௩మଶఙమቁషమച dv  ቀ ଶగఙమቁଵ/ଶ ݁ିଶఢ < ݁ିא.   
(3.8)  
 
 Let ܫ = maxஸஸ(|ݕ(ݓ)|). Then  
 p(ܫ  ݊)=p(∏ |(ݓ)ݕ|  ݊ୀ )=∏ |(ݓ)ݕ|)   ݊) ୀ  =(∏  (1 െୀݕ|) (ݓ)| > ݊))  
=ቈ1 െ ටଶగ  ݁ି௩మ/ଶ݀ݒஶ ାଵ

 > 1 െ ݁ିమ/ଶ (݊ > ݊).   (3.9)  
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 Let ܶ = maxஸஸ |߰൫1 + 2Є݁ఏ൯|.For the Gegenbauer polynomials, ݄= ଶభషమഊగ௰ (ାଶఒ) (ାఒ)ሼ௰(ఒ)ሽభమ௰ (ାଵ)  for λ>1/2[see 17, p.281].Hence ܾ = ݄ିଵ/ଶ<α1݊ଵ/ଶ where ߙଵ is a 

constant.From the integral representation of Gegenbauer polynomial [3], we have (ݐ) = ଶభషమഊ௰ (ଶఒା) !ሼ௰(ఒ)ሽమ  ݐ)  + ݅ඥ(1 െ గ.ߠଶఒିଵ݀ (ߠ݊݅ݏ)  (ߠݏܿ(ଶݐ  

 Remembering that א= ݊ିଵ/ (ସାఋ) , we have from above representation  

 ห (1 + 2 א ݁ఏ) ห < ଶభషమഊ௰ (ଶఒା) ![௰ (ఒ) ]మ  (1 + 2  (א < ଷ݊ఈమ (1ߙ + 2 ( (א   . ଷ are constants involving λ onlyߙ ଶ andߙ ଷ݊ఈమexp2݊యశഃరశഃ൨, whereߙ> 
 
 Hence  

 ܶ = ିଵ/ଶ݄(ݐ) < ఈమାଵ/ଶ݊ܣ exp ൬2݊యశഃరశഃ൰,   (3.10)  
 
where A is a constant .Also  
 ห݂ (1 + 2 א ݁ఏ) ห=ห∑  (1߰(ݓ)ݕ + 2 א ݁ఏ) ୀ ห  ∑ ห߰ (1| (ݓ) ݕ| + 2 ୀ݁ఏ) | א 1 ∑ ܶୀ =n݈ ܶ.Hence from (3 . 9) , it follows that P (ห݂ (1 + 2 א ݁ఏ) ห ݊ଶ ܶ)   1 െ ݁ିమమ . 
 This together with (3 . 10) , gives  

 P൬݂ห1 + 2 א ݁ఏห  ఈexp  (2݊యశഃరశഃ) ൰݊ܣ  1 െ ݁ିమమ ,   (3 . 11)  
 
where ߙ = ଶߙ + 5/2.  
 
 So from (3 . 8) and (3 . 11) , we obtain  

 P൬ቚ (ଵାଶאഇ)  (ଵ) ቚ  Anexp  (2nయశಌరశಌ + 2n ൰ (א >1 െ ݁ିమమ ିషא
>1-ଶ.   (3 . 12)  

 
 Let n (א) denote the number of zeros of f (ݕത(ݓ), ݖ| 0inside the circle= (ݖ െ 1|  א 
.It is easy to see that the number of zeros of (2 .1) inside the interval 1-א ݐ  1 does 
not exceed n (א) .  
 By Jensen's theorem, (Tetchmarsh[6]) we have  

(א) ݊    ଵଶగଶ  ݈݃ ቚ (ଵାଶאഇ)  (ଵ) ቚ ଶగߠ݀  ଵଶగଶ  ݈݃ ൜݊ܣఈ݁ݔ ൬2݊యశഃరశഃ൰ +ଶగ2݊ ൠא   ,ߠ݀
 
for f (1) ് 0, except for a set of measure at most 2/n, as is evident from (3 .12) .  

 Thus, we obtain that the number of zeros of (1 .1) in (1-א, 1) is at most 0 ൬݊యశഃరశഃ൰, 

with probability at least 1 െ ଶ.Identical result is obtainable for the number of zeros of 
(1.1) in (-1, -1+א) , so that  
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ܧ   ܰ (f;-1, -1+א) =0൬݊యశഃరశഃ൰.  
 
 The above derivation together with the estimate of ܧ ܰ(݂; െ1+א, 1െא), proves 
that  

ܧ   ܰ (݂; െ1, 1) = √ଷ + 0 ൬݊యశഃరశഃ൰ .  
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