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Abstract 
 

Inventory management involves trade-offs between conflicting objectives such 
as cost minimization and service level maximization. The trade-off analysis of 
cycle stock investment and workload, so called the exchange curve, possibly 
dates back to several decades ago. These analyses seldom formulated 
inventory trade-offs as a multi-objective optimization problem and their 
solution procedures were all based on single objective optimization. To our 
best knowledge, there do exist some studies that propose non-classical 
approach to multi-objective inventory management. However, some of the 
objectives in earlier studies are not conflicted each other such that the multi-
objective models were not properly justified. In this paper, a Inventory 
Management Model without redundancy is discussed first. Then a solution 
procedure based on evolutionary multi-objective optimization is introduced to 
effectively solve the fixed order model. The results show that the intrinsic 
multi-objective approach can find efficient policies of order size and safety 
factor simultaneously without estimating shortage cost or service level. 
Moreover, a fitted exchange curve of cost and service is useful in determining 
the best customer service possible for the given investment in inventory 
management. The cost-service trade-off can be observed in a single run of an 
iterative computation, so that it is more appropriate for the practice of 
inventory management.  
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1. Introduction 
Most business decisions involve more than one conflicting objectives. For example, 
inventory management has to operate in an efficient way while maintaining 
appropriate customer service. This uncomfortable fact has been ignored for some 
time, although some modifications of single objective models have been employed to 
reach a compromise solution. Due to the advances in information technology, analysis 
adhering to the essence of multi-objective optimization is increasingly taking on 
recently. 
 Multi-objective inventory management is seldom found in literatures, although 
trade-off analysis of cycle stock and workload (i.e. number of annual setups) possibly 
dates back to several decades ago (Brown, 1961). The oldest inventory model, 
economic order quantity (EOQ), implicitly aggregated two conflicting objectives into 
a single one by introducing the inventory carrying rate. Since Brown (1961), 
practitioners argued that there is no correct value for the inventory-carrying rate. 
Instead, it is a management policy that can be changed from time to time to meet the 
volatile environment. Brown (1967) later introduced the concept of exchange curve to 
delineate the trade-off between workload and cycle stock. Starr and Miller (1962) also 
determined trade-off between the number of annual setups and average investment by 
the method of Lagrangian relaxation. 
 For items with probabilistic demand, all cost components including setup, 
carrying, and shortage costs could be considered as management policies. Controlling 
shortage is often treated as another objective, in addition to the efforts of carrying 
inventory, by many inventory consultants (Silver et al., 1998). Gardner and 
Dannenbring (1979) specifically introduced customer service maximization as another 
objective, along with minimizing workload and inventory investment. They extended 
the exchange curve to a response surface in three–dimensional space. Unfortunately, 
there is no direct solution for any variable in their model, and so the problem is solved 
by successive approximation. Alscher and Schneider (1982) used the same model in 
Gardner and Dannebring (1979) and proposed another method instead of Lagrangian 
multiplier to solve the tri-objective probabilistic model. Literatures mentioned above 
belong to a branch of inventory management studies that usually refers to the 
exchange curve analysis. They did not explicitly formulate inventory trade-off as a 
multi-objective optimization problem. Moreover, their solution procedures are all 
based on single objective optimization that either unifies several objectives into a 
single one or treats all objectives except one as constraints. Thus, the transformed 
problems can be solved by classical optimization methods. However, only a single 
trade-off solution can be obtained in each run of most classical methods, consequently 
the process to generate exchange curve is lengthy and frustrated. Last but not the 
least, this approach contradicts our intuition that single-objective optimization is a 
degenerate case of multi-objective optimization (Deb, 2001). 
 Bookbinder and Chen (1992) proposed a multi-criteria (or multi-objective) 
approach for analyzing multi-echelon inventory and distribution systems. They 
described their approach as multiple criteria decision making (MCDM) 
generalizations of earlier studies (Brown, 1961; Brown, 1967; Star and Miller, 1962; 
Gardner and Dannenbring, 1979). Their formulations are intrinsically multi-objective; 
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however, the solution procedure still follows the single objective optimization. Puerto 
et al. (2002) commented on the paper by Bookbinder and Chen (1992) that their 
solution procedure does not determine the Pareto-optimal set properly. Besides giving 
a procedure producing the set, they also stated that the models reduces to a bi-criteria 
nonlinear mixed integer programming problem that is well known to be the hardest 
kind of problem in multi-objective optimization for which no general tools have been 
yet developed. 
 Agrell (1995) presented a multi-criteria framework for probabilistic inventory 
systems with backordering. Three criteria including expected cost, expected number 
of shortage occasions and expected number of demand not covered from stock are 
minimized in this work. The goal is to find efficient order size and safety stock 
(defined in Section 3 later) to strike a balance among conflicting objectives. 
Therefore, the trade-off among objectives should be assessed before a management 
policy has been made. Agrell (1995) implemented a commonly used method of multi-
objective optimization, named Step method (STEM), in Microsoft Excel. Users can 
use the decision support system to interactively find one or several efficient solutions 
of order size and safety stock. Nevertheless, a sequence of single objective 
optimization problems still needs to be solved as in the case of the Lagrangian 
relaxation approach. 
 For the non-classical approach to multi-objective inventory management, Tsou 
(2008) presented a two-stage decision framework based on multi-objective particle 
swarm optimization (MOPSO) and technique for order preference by similarity to 
ideal solution (TOPSIS). MOPSO is used to generate the efficient policies of the 
multi-objective inventory management problem in Agrell (1995). Then, a compromise 
solution was selected by TOPSIS according to subjective preferences of decision 
makers. Tsou and Kao (2008) also developed a metaheuristic based on 
Electromagnetism-like Mechanism (EM) to approximate the efficient front without 
using any prior or interactive preference. They showed that the metaheuristic could 
find similar trade-off solutions in cost and shortage as the interactive procedure 
STEM did. Tsou (2009) further showed that evolutionary Pareto approach could 
generate trade-off solutions potentially ignored by the well-known simultaneous 
method. Nevertheless, we recently notice that the trade-off solutions of above studies 
actually laid on an exchange curve, instead of forming a trade-off surface in the 3D 
objective space. It apparently indicates that some of the objectives, including 
minimization of expected annual cost, expected annual number of stock out 
occasions, and the expected annual number of items stocked out, are not conflicted 
each other. Among which, the last two objectives are redundant because they are 
related to the same concept of shortage but different measures. The use of a tri-
objective model, consequently, was not properly justified in above studies. . 
 The purposes of this paper are twofold. Firstly, we present a fixed order inventory 
model without redundancy under lost sales. Secondly, a solution procedure based on 
evolutionary multi-objective optimization is used to address the inventory 
management problem. It is well known that applying evolutionary multi-objective 
optimization methods to solve business and industrial problems, such as portfolio 
selection and facility location problem, is getting popular recently (Chiam et al., 2008, 
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Rabbani et al., 2010, Bhattacharya and Bandyopodhyay, 2010). In this paper, we 
combine the MOPSO with local search mechanism to solve the problem, which was 
suggested by Tsou et al. (2006) and has been shown that it is competitive with other 
well-known evolutionary multi-objective optimization algorithm, such as the Strength 
Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). The rest of this 
paper is organized as follows. Section 2 describes the bi-objective (r,Q) system under 
lost sales. An algorithm based on MOPSO is described in Section 3. Computational 
experiments are carried out in Section 4. Finally, conclusions are presented 
accordingly. 
 
 
2. Inventory System with Fixed Order under Lost Sales 
A common mechanism to managing items with probabilistic demand is the fixed 
order system (r,Q). It is widely used in business because it is easy to understand and 
implement. Managers will place an order of size Q  when inventory position drops to 
or lower than the reorder point r . Reorder point is equal to expected lead time 
demand ( Lμ ) plus safety stock ( SS ), which is the safety factor ( k ) times a standard 
deviation of lead time demand ( Lσ ). Therefore, the decision is boiled down to 
determine management policy described by k  and Q  in order to meet the business 
target. Agrell (1995) presented a tri-objective model concerning cost and shortage to 
plan for these management policies. As mentioned earlier, trade-off solutions based 
on Agrell’s model actually formed an exchange curve, because there exists 
redundancy among objectives. One of the shortage objectives is simply dropped out to 
have a non-redundant model under lost sales shown as follows.  
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 Where 
 Q  is the lot size, 
 D  is the average annual demand, 
 A  is the ordering/setup cost, 
 c  is the unit item cost, 
 h  is the inventory carrying rate, 
 L  is the lead time, 
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 LD  is the lead time demand.  
 
 It is normally distributed with mean Lμ  and standard deviation Lσ , ( )xϕ  and 

( )xΦ  are the probability distribution and cumulative distribution functions of the 
standard normal random variables, respectively, and r  is the order point, which 
equals to the expected lead time demand plus the safety stock. That is L Lr kμ σ= + . 
 Objective (1) is to minimize the expected cost per year for setup and holding 
inventory under lost sales, and objective (2) is to minimize the expected number of 
shortage occasions per year. The derivations of these objectives can be found in a 
classical inventory management book (Silver et al., 1998). Generally speaking, the 
function in (1) is an approximation of the inventory cost when the quantity stocked 
out is very small. 
 Inequality (3) ensures that the order size should be no less than EOQ quantity and 
no more than the average annual demand. This means that the order size for a 
probabilistic inventory system should be greater than or equal to that of deterministic 
case in order to counteract uncertainty. Inequality (4) guarantees that the safety stock 
will not be greater than the average annual demand and must be non-negative. 
 One of the important trades-off under probabilistic demand is whether to hold 
more inventories or to face possible stock outs. Both circumstances incur some sort of 
cost, for example, holding and ordering cost have been widely monitored by many 
companies across industries and countries for a long time. But, shortage cost is not 
easy to determine till now. Gardner and Dannenbring (1979) found that most 
practitioners have not adopted shortage cost, since there is no basis for its 
measurement in accounting methodology. Alscher and Schneider (1982) also 
mentioned that most practitioners do not make use of shortages but preferring to use 
measures of customer service. Due to these practices in inventory management, 
expected total relevant cost and customer service measured by the expected number of 
stock out occasions are chosen as inventory trade-off. 
 
 
3. A Pareto approach based on MOPSO 
For the minimization problem described above, an inventory decision   

r 
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one of above inequality is strictly held. Vector  
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 In general, the search process does not interest solutions dominated by other 
solutions. It is also the case that no feasible solution could dominate all other feasible 
solutions; otherwise there would be no need to conduct multi-objective optimization. 
Therefore, we need to find solutions that are not dominated by any other solutions. 
Such solutions are called efficient or Pareto-optimal solutions. Their counterparts in 
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the objective space form the efficient or Pareto-optimal front that is the trade-off 
among objectives. Efficiency results from the conflicts among objectives, which are 
inherent in multi-objective optimization and can be formally defined as follows. A 
solution   

r 
x t  is called a efficient solution of the bi-objective inventory problem if there 

does not exist any solution  
r 
x , (  

r 
x ≠

r 
x t) so that  C(

r 
x ) ≤ C(

r 
x t ) and  S(

r 
x ) ≤ S(

r 
x t ) and at 

least one of above inequality is strictly held. The condition of efficient solution is 
rather strict and many multi-objective optimization algorithms cannot guarantee to 
generate efficient solutions but only weakly efficient solutions. A solution   

r 
x t  is called 

a weakly efficient solution of the bi-objective inventory problem if there does not 
exist any solution  

r 
x , (  

r 
x ≠

r 
x t) so that  C(

r 
x ) < C(

r 
x t ) and  S(

r 
x ) < S(
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x t ). 

 The geometric interpretation of efficiency can be shown as in Figure 1 (Liu et al., 
2003). The weakly efficient solutions include  

r 
x 1,  

r 
x 2,  

r 
x 3,  

r 
x 5,  

r 
x 7,  

r 
x 8 and   

r 
x 9, among 

which   
r 
x 2 and   

r 
x 8 are not efficient and they are weakly dominated by   

r 
x 1 and   

r 
x 9, 

respectively. Finally, solutions  
r 
x 4  and  

r 
x 6 are strongly dominated by   

r 
x 5 and  

r 
x 7, 

respectively. 
 

 
 

Figure 1. Efficient and weakly efficient solutions. 
 
 

 The MOPSO algorithm is based on the concept of efficiency described earlier 
(Coello-Coello and Lechuga, 2002). Particle swarm optimization (PSO), which the 
MOPSO derived from, is a population-based search algorithm for optimization 
problems. Because PSO has excellent exploration capability, incorporation of local 
search into MOPSO is essential when the exploitative capability should be 
emphasized; especially there are many efficient solutions for multi-objective 
problems. The local search mechanism not only can fully exploit a potential good 
solution, but also may prevent MOPSO from premature convergence. Hence 
combining local search and MOPSO will hopefully improve the chance of finding 
better trade-offs in inventory cost and customer service. This kind of synergy between 
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exploitation and exploration is intended to enhance the proximity of efficient set to 
the true Pareto-optimal front. The pseudo code of the proposed approach is shown in 
Table 1. 

 
Table 1. The pseudo code of proposed approach. 

 

 
 
 

4. Computational Results 
Inventory data from pharmaceutical industry: D = 3,412, Lσ =53.354, A = 80, c = 
27.5, and 0.26h =  are solved by MOPSO with local search. Although the hybrid 
MOPSO is slower than the MOPSO, it surpasses the MOPSO in light of the number 
of efficient policies, the accuracy of the efficient set, and the spread of the solutions. 
Table 2 contains thirty efficient (k,Q) policies generated from the MOPSO with local 
search. Plenty of solutions offered by a single run of the multi-objective approach can 
help decision makers develop management policies under a changing environment. 
 The trade-off between expected cost and service level is shown in Figure 2. To 
outline a policy for inventory management, a regression curve is fitted for the cost and 
service trade-off of the pharmaceutical data. The non-parametric curve on the plot is 
drawn by a local regression smoother. It works by fitting a least squares line in the 
neighborhood of each solution, placing greater weight on points closer to the focal 
solution. This curve demonstrates how capital investment in inventory management 
can be traded for customer service. The coordinates shown on the top-right corner are 
the seventeenth and twenty-sixth solutions in Table 2. Points below the curve are 
infeasible and decisions located above the curve are suboptimal. They can be 
improved by moving back to the curve. 
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Table 2. Efficient solutions produced by the MOPSO with local search. 
 

Sol. No. Q k C S Service Level 
1 294.05 1.55 2725 0.7044 0.9394 
2 304.15 1.55 2726 0.6810 0.9394 
3 300.25 1.98 2795 0.2706 0.9761 
4 298.58 1.47 2722 0.8106 0.9292 
5 300.25 1.98 2795 0.2706 0.9761 
6 303.58 1.95 2789 0.2873 0.9744 
7 291.75 1.69 2738 0.5332 0.9545 
8 310.97 1.49 2724 0.7490 0.9319 
9 323.67 2.43 2945 0.0778 0.9925 
10 312.76 1.68 2741 0.5080 0.9535 
11 303.58 2.01 2804 0.2491 0.9778 
12 276.49 2.14 2835 0.1984 0.9838 
13 862.19 4.44 5093 0.0000 1.0000 
14 300.7 1.75 2748 0.4552 0.9599 
15 300.25 1.98 2795 0.2706 0.9761 
16 285.12 2.28 2876 0.1336 0.9887 
17 419.32 2.85 3242 0.0165 0.9978 
18 329.07 1.81 2774 0.3648 0.9649 
19 321.22 2.25 2884 0.1284 0.9878 
20 290.47 1.63 2732 0.6068 0.9484 
21 284.06 2.25 2866 0.1452 0.9878 
22 310.26 2.2 2861 0.1516 0.9861 
23 313.06 1.89 2780 0.3202 0.9706 
24 287.39 1.86 2766 0.3734 0.9686 
25 300.25 1.98 2795 0.2706 0.9761 
26 302.76 3.68 3389 0.0009 0.9999 
27 295.07 1.84 2763 0.3805 0.9671 
28 261.33 2.74 3034 0.0379 0.9969 
29 300.25 1.98 2795 0.2706 0.9761 
30 322.64 1.84 2776 0.3480 0.9671 
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Figure 2. Exchange curve for the trade-off between expected cost (x-axis) and service 
level (y-axis). 
 
 
5. Conclusions 
Inventory management is usually formulated as single objective optimization models. 
To build such models, managers have to estimate shortage cost in order to aggregate 
conflicting and incommensurate objectives into a single one. Not only the difficulty in 
estimation has been generally acknowledged, but also the trade-off in inventory 
management targets should be explicitly put in a multi-objective formulation. 
Nevertheless, an appropriate model (i.e. without redundant objectives) when the 
trade-off multi-objectively formulated is hardly found in literatures. For a 
probabilistic inventory system, to strike a balance between operating the management 
system least costly or taking risk on possible shortage is an important trade-off to be 
addressed. Traditional approach, well known as the exchange curve, usually explores 
the trade-off of cost and service from a single objective formulation. And it was 
mostly solved by successive approximation based on Lagrange method that is lengthy 
and frustrating. 
 This paper presented a model without redundancy in the objectives, which 
represents a fixed order system under lost sales. A solver based on MOPSO was 
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utilized to find the inventory management policies. It employed a local search to fully 
exploit a potentially good solution. Such hybridization could strengthen the 
possibilities of particles in MOPSO for flying towards the Pareto-optimal front and 
generate a well-distributed trade-off set. 
 The way of multi-objective analysis has been shown that it can find the whole 
picture of efficient order size and safety factor, not only simultaneously but also in a 
single run. A lot of solutions generated by the multi-objective approach facilitate 
decision makers develop management policies under a changing environment. 
Besides that, an estimated exchange curve is useful in determining the possibly best 
customer service under given investment in inventory management. Therefore, it 
indeed answers the need of practical inventory management. Finally, extending the 
analysis to the case of supply chain would be valuable because inventory management 
is a critical issue under such business environment. 
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