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Abstract

This paper establishes the characterization ofWiener process by constant
regression.
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1. Introduction Abstract

Severa characterization theorems for Wiener Process are now known by means of
conditions on either independence or identical distribution of stochastic integrals or
through regression properties of them. Some of these results can be found in Lukacs
(1968), Ramachandran and Rao (1970) and Prakasa Rao (1970). Our aim in this paper
is to obtain another characterization of Wiener process paraleling the following
theorem of Hyede (1970). Some preliminaries on stochastic processes are explained in
section 2 and section 3 contains the main characterization theorem.

2.Characterization of Wiener Process by Symmetry
Theorem 1.1 (Hyede)

Let X, Xy oeeiivew., X be  independent random  variables and

a;,bj,1 < j <k be non — zero constants with a;b;* = —a;b;* for al i # j. If the
k k

conditional distribution of Zanj given ijXj is symmetric , then each X; has a
j=1 j=1

normal (or degenerate) distribution. these distributions are constrained in such a way
that if Ef{exp (it)X;} = exp(it A; — B;t*), 1<j<k,A;B;red, B;>0, then



462 Dr. T. Vasanthi and Mrs. M.Geetha

k k
)= )=

Some preliminaries on stochastic processes are explained in section 2 and section
3 contains the main characterization theorem.
Let T =[A, B]. Let us consider Stochastic Processes {X(t),t € T}. Let a(-) bea
continuous function on [4, B]. It can be shown that the integral
B

f a(t)dX(t)
A

exists as the limit in the sense of convergence in probability of the corresponding
Riemann — Stieltjes sums if the process is continuous and homogeneous with
independent increments as defined below.

A Stochastic Process {X(t),t € T} is said to be homogeneous process with
independent increments if the distribution of the increments X (t + h) — X(t) depends
on h but not t and if the increments over non — overlapping intervals are stochastically
independent. the process is said to be continuous if X (t)converges in probability to
X(s) ast tendsto s for every s € T. let ¢(u, h) denote the characteristic function of
X(t+h)—X(t). it iswell known that ¢(u; h) isinfinitely divisible and ¢(u; h) =
{¢(u; 1) }*. a homogeneous process {X(t),t € T} with independent
increments is called a Wiener process if the increments X(t + h) — X(t) are normally
distributed with variance proportional to h.

Lemmal.l

Let {X(t),t € T} be a continuous homogeneous process with independent increments
on T =[A,B]. Let a(-) and b(-) be continuous functions on [4,B]. Let Y =
f:Q(t)dX(t) and Z = ffb(t)dX(t). Let ¢(u; h) and 8(u,v) be the characteristic
functions of X(t + h) — X(t) and (Y, Z) respectively. Then 0 (u, v) is different from
zevo for all v and v and

B
log O(u,v) = f Ylu a(t) + vb(t)] dt (1.1)
A

where ¥ (u) = log ¢ (u; 1).

Lemmal.2
If £(y) isabsolutely integrable with respect to ameasure Pand [ f(y)e™P(dy) = 0
fordl u,then f(y) =0a.e. P.

Theorem 1.2

let {X(t),t € T}, T = [A, B] be a continuous homogeneous process with independent
increments and suppose that the increments have non — degenerate distributions. let
a(-) and b(-) be continuous functions defined on [A, B] with the property that
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B

B
f [b3()[a(D)] tdt < ooandf b3(t)[a(t)] dt # 0 (1.2)
A A

Let i i
Yzf a(t)dX(t);sz b(t)dX(t) (1.3)
A A

be defined in the sense of convergence in probability. Then the conditional
distribution of Y given Z is symmetric if and only if {X(t),t € T} is a Wiener
Process with mean function m(t) = At and a(-) and b(-) satisfy therelations

B B
Af a(t)dt =0 and f a(t)b(t)dt =0 (1.4)
A A
Pr oof
“If part”. Let Y and Z be as defined in (1.3). Let () denote the logarithm of the
characteristic function X (t + 1) — X(t). Suppose that the conditional distribution of Y
given Z is symmetric. Hence the characteristic function of the conditional distribution

of Y givenZ isred i.e.
E[e™|Z] = E[e~™Y|Z] (1.5)

for al real u. thisin turn implies that
E[ein+iuY] — E[eivz—iuY] (1.6)

for al real numbersu and v. therefore, by lemma (1.1) it follows that

B B
f Y(ua(t) +vb(t)) dt = f Y(—ua(t) +vb(t)) dt (1.7)
A A

for al u and v.
Now, Let us obtain the relation
B
j W a(t) + vb(t)) — p(—u a(t) + vb(D)] dt = 0 (1.8)
A

for all u and v. Multiplying on the left hand side of (1.8) by (x — u) and integrating
from O to x, we have

X B
f {(x — ) j [ a(t) + vb(t)) — p(—u a(t) + vb(£))] dt} du =0
0 A

for al x and v. Changing the order of integration, let us get
B x
f {(x — u)f [W(ua(t) +vb(t)) —Y(—ua(t) + vb(t))] du} dt=0 (1.9
A 0

for al x and v.Let us now make the substitution w = ua(t) + vb(t) and
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z = —ua(t) + vb(t). Inthisway let us obtain

B xa(t)+vb(t) w — vb(t) dt
[ o IR o
_fB{fvb(t) <x+z_vb(t)>¢( )d } o (1.10)
A —xa(t)+vb(t) a(t) (t) .

it can be seen from this relation, that the left hand side of (1.5) can be differentiated,
twice under the integral sign with respect to v.In particular, it follows that  is
differentiable twice everywhere. Differentiating twice with respect to v under the
integral sign, it can be shown that

B bz(t)

j ——{Y(x a(t) + vb(t)) — P(—x a(t) + vb(t))} dt
a4 a’(t)

= 2x [} 2Oy (wh(e))dt (1.11)

for dl x and v. Again, by arguments similar to those given above Laha, it can be
shown that the left hand side of (1.11) can be differentiated with respect to v under the
integral sign and let us get

B b3(t)
f W' (xa(t) + vb(t)) —Y'(—x a(t) + vb(t))}dt

A a?(t)
= 2x f:%w”(vb(t))dt (1.12)
for al x and v. Substituting v = 0 in (1.12), one obtains the relation
fBbg( ){ ( (t)) (_ (t))}dt 2 11 0 fB 3( )
h az(t) l/) l/) xa - XIIJ ( ) (t)
foral x. Let 8(x) = Y(x) — Y (—x). Thenitisclear that
fBbg( )e "(xa()) dt = 9”(0)]3 3() (1.13)
4 a%(t) (t) '
for al x.
. b3( ) II 1 B 3( )
i.e L 0" (xa(t))dt =6 (0)f (t) (1.14)
Bp3(t) 6" (x a(t)) B
L E{l _9”—(0)} dt =0 (1.15)

for al x. Here 8" (0) # 0 since the distribution of X(t) is non — degenerate. It can be
seen, by arguments similar to those given that 8" (x)/6"(0) is the characteristic
function of a symmetric distribution function L. Hence
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Hll(x)
91/(0)

= foocosxz L(dz) (1.16)

This relation, together with (1.15), implies that

B b(t) B B b3(t) 00
fA m dt _L "0 U_wcosxa(t)z L(dz)l dt.

Let c(t) = |a(t)]. Clearly
B 1,3 B 1,3 [e%)
J- b"(©) dt =] al0) U cos(xc(t)z) L(dz)l dt,
A —o00

a® © "y a®

= f cosxz G(dz) (1.17)

where .
b 3
mn:LaghQ%%u

Repeated integration isjustified by Fubini’ s theorem in view of assumption. Let

G*'(z) = MG(2) (1.18)
Where
B B b3(t) }_1
M= {L 20 dt: . (1.19)
Then, let us obtain ,
f cosxz G*(dz) =1 (1.20)

for al x from (1.16). We shall first prove that the function G*(2) (i) is symmetric in
the sense that G*(—z) =1 — G*(z — 0), (ii) is of bounded variation and (iii) is right
continuous. Let z,, T z asn — co. Then

3 3@) z
G*(~2) = Mj Ton dﬂ)m

[ 201 -

since L is symmetric distribution function.
= G*(— )—Mf 3() limL(Z—n>}dt
(t) n-e - \c(t)

ey o (RO K
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by the dominated convergence theorem. Hence
G*'(—z) = lim{1 - G*(z,)}
n—-oo
=1-G"(z—-0)
by definition. This proves that G* is symmetric in the sense that

G'(—z) =1—-G*(z—0).Now let [a, B] be any bounded interval and
a=2y<zZ3 <t <zy=p

be any subdivision of [a, B]. Then

3
Z'G () = 6"z = Z| f Z((tg) c(t))_LCl(t;)} at

<o [ | ()1 ()]
3
If ba((tt)) c(t)) L(c?_t))} dt

sincelL isadistri bution function, which in turn proves that

3
Zwm%G@m_|q a2
for any subdivision

a(t)
a=2y<zZ3 <t <zp=p

of [a,B]. Hence G* is of bounded variation on [A, B]. This also shows that the total
variation of G* on (—oo, ) is finite. Right continuity of G* follows from the right
continuity of L and dominated convergence theorem. In fact G* is continuous at all

points at which L is continuous. (1.20) together with the fact that G* is symmetric
gives

fmeisz*(dz) =1 (1.21)

for al x where G* is a function of bounded variation whose total variation on
(—o0, ) finite. Let

H*(z) =0 forz<O0
=1 forz=>0
Clearly,
f e H*(dz) = 1 (1.22)

for al x. (1.21) and (1.22) together show that for all x,
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f eixzc*(dz)zf e*? H*(dz)

— 00

where G and H are functions of bounded variation with total variation finite. Hence
by remarksin Wintner it follows that
G*(z) —H*(2)

is a constant ¢ on the set of continuity points G* — H*. From the definition of G*, let
usobtain G*(+o) = 1. Clearly H*(4+o0) = 1. Taking limits through continuity points
of G* — H", let us obtain that the constant c is zero. Hence
G*'(z) =H*(2)

at al continuity points of G* — H*. Since H is continuous at all points except zero, it
follows that

G'(z)=0 forz<0

=1 forz>0

where z is any continuity point of G*. From the right continuity of G*and the fact that
the set of continuity points of G *is dense, let us obtain that

G'(z)=0 forz<0
=1 forz=0 (12.23)
for every x. (1.22) and (1.17) together show that
G*(0) =M OOb3(t)L0d—LO
=l [ ZeSL©)de = L)

therefore L(0) isequal to 1. Hence L(z) = 1 for z = 0. From the asymmetry of L, let
usobtainthat L(z) = 0 for z < 0.(1.16) shows that
0" (x)=20"(0)

For al x. It can be shown that 6(t) is a quadratic polynomia in t and let us
conclude from cramer’s theorem that the increments of the process are normally
distributed. Since y is differentiable twice under the integral sign, let us obtain from
(1.7) that

B B
j a(®)Y'(ua(t) +vb(t)) dt = —f a(t)y'(—ua(t) + vb(t)) dt (1.24)

A A
and
[} a®b®y" wa(t) + vb(®)) dt = — [, a(ObO)P" (—u a(t) + vb(t)) dt (1.25)
Substitutingu = v = 0, it follows that
B
¢'(0)f a(t)dt =0 (1.26)
A
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and

B
1,0”(0)] a(t)b(t)dt =0 (1.27)
A

Since i’ = iE[X(t)] = iAt and '’ (0) # 0, let us obtain that the functions a(-)
and b(+) satisfy (1.4). This completes the proof of the “If part”.

“Only If part”.

Suppose {X(t),t € T} is a Wiener process with mean m(t) = At and covariance
function r(s, t) = 02 min(s, t) where —oco < 1 < 0,02 > 0.

Let a(-) and b(-) be continuous functions defined on [4,B] and let Y and Z be
defined asin (1.3). Further suppose that

B B
Af a(t)dt =0 and f a(®)b(t)dt =0 (1.28)
A A

Let ¥ () be the logarithm of the characteristic function X(t + 1) — X(t). Then
Y(t) = iAt — %aztz. In view of (1.27), it followsthat for all u and v,

B B
f Ylua(t) +vb(t)] dt = f Yl—ua(t) + vb(t)] dt
A A

which in turn implies that
E[eiuY+in] — E[e—iuY+in]

by Lemma (1.1). Hence
E[e"?E{e™|Z}] = E[e™?E{e~™"|Z}] (1.29)

for al u and v. Thisin turn proves that
E[e™|Z] = E[e™™|Z]

amost everywhere with respect to the distribution of Z by lemma 1.2. Hence the
conditional distribution of Y givenin Z is symmetric. This completes the proof of the
“Only if part”.

2. Characterization of Wiener process by constant Regression

Let T =[A,B]. Let us consider Stochastic Processes {X(t), t € T} which have finite
moments of all orders. In particular, {X(t),t € T} will be a stochastic process of the
second order. Let a(-) be a function which is continuous on [4, B], and suppose that
the mean function m(t) = E[X(t)] and the covariance function r(s,t) =
E[X(t)X(s)] — E[X(t)]E[X(s)] are of bounded variation in [A, B]. It can be shown
that the integral

B
f a(t) dX(t) (2.1)
A
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exists as the limit in the mean (lim) of the corresponding Riemann — Stieltjes sums.

Definition 2.1

A stochastic process {X(t),t € T} Is said to be a homogeneous process with
independent increments if the distribution of the increments X (t + h) — X(t) depends
only on h but is independent of ¢, and if the increments over non — overlapping
intervals are stochastically independent. The process is said to be continuous if X(t)
converges in probability to X(s) asttendsto s forevery s € T. Let {X(t),t € T} bea
continuous homogeneous process with independent increments. Let ¢(u; h) denote
the characteristic function of X (t + h) — X(t).

Definition 2.2

A homogeneous process {X(t), t € T} with independent increments is called a wiener
process if the increments X(t + h) — X(t) are normally distributed with variance
proportional to h.

Lemma2.1
A random variable y, with finite expectation, has constant regression on a random
variableZ, i.e., E[Y|Z] = E[Y] a.e. if and only if

E[ve'?] = E[Y]E[e"?] (2.2)

Lemma 2.2

Let {X(t),t € T}be a continuous homogeneous stochastic process with independent
incrementson T = [A, B] . Further, suppose that the process is a second order process
and its mean function and covariance function are of bounded variation in [4, B]. Let

B B
Yzf g(t)dX(t);Z=j h(t)dX(t)
A A

for continuous functions g(+) and h(-) on [4, B]. Denote by ¢(u; h) and 6(u, v) the
characteristic functions of X(t + h) — X(t) and (Y, Z)respectively. Then 8(u,v) is
different from zero for al u and v and

B
log O(u,v) = j Ylug(t) + vh(t)] dt
A

wherey(u) =logp(u; 1) .

Lemma 2.3

Let {X(t),t € T} be a continuous homogeneous stochastic process with independent
incrementson T = [A, B] . Further, suppose that the process is a second order process
and its mean function and covariance function are of bounded variation on [4, B]. Let
g(+) and h(+) be continuous functions on [4, B]. Denote

B B
Yzng(t)dX(t); szAh(t)dX(t)
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then for any real number v,

B B
E[Yeivz]z—ig g(OY' [vh(D)] dt>-exp< f Y[vh(t)] dt) (2.3)
A A

where Y (u) =loge(u;1)is the logarithm of the characteristic function
Xt+1)—-X().

Pr oof
let 6(u, v) denote the characteristic function of the bivariate random variable (Y, Z).
By Lemma2.2,log 6(u,v)iswell —defined and

log  6(u,v) = [, ¥lug(t) + vh(v)]dt,
i.e, Elexp(iuY + ivZ)] = exp (ffz/)[ug(t) + vh(t)] dt).

Differentiating on both sides with respect to u, let us get that for all u and v,
E[iY exp(iuY + ivZ)]

B B
= exp <f Ylug(t) + vh(t)] dt> f Y'lug(t) + vh(t)] g(t)dt (2.4)
A A
where ' (u) denotes the derivative of y(+) at u. This differentiation is valid since the

random vector (Y, Z) has moments of all orders. Take u = 0 in (2.4). then it follows
that

B B
E[iY e2] = exp ( f Wvh(t)] dt)- f W' h(D)] g(6)dt
A A

and hence

B B
E[yeWZ] = —i (f g®Y'[vh(t)] dt) - exp <f Yvh(t)] dt)
A A

which completes the proof of the lemma.

Theorem 2.1

Let {X(t),t € T}be a continuous homogeneous stochastic process with independent
increments and suppose that the increments have non — degenerate distributions.
Further suppose that the process has moments of all orders and its mean function well

as its covariance function are of bounded variation in T = [A,B]. Let a(+)
and b(+) be continuous functions defined on [A, B] with the property that
B
f a(®)b(t)dt =0 (2.5)
A
implies that

f OO e % 0 (2.6)
A
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foral k > 1. Let
B
U= j a(t)dX(t) = 0 2.7)

A
B
V=1 b(®)dX(t) =0 (2.8)
A
Then U has constant regressionon V, i.e.,
E[U|V] =E[U] a.e

if and only if
{X(t),t € T} isaWiener process with alinear mean function,

B
f a(Ob(t)dt = 0
A

Pr oof
“Only If part”. Suppose {X(t),t € T} is a Wiener process with mean m(t) = At and
covariance function (s, t) = ¢ min(s, t) where —0 <A<

0,02 > 0.Let a(-) and b(+) be continuous functions on [4, B] and define U and V as
in the Theorem. Further suppose that a(-) and b(+) are such that
B

f a(t)b(t)dt =0 (2.9)
A

Since Y (+) is the logarithm of the characteristic function X(t + 1) — X(¢t). It is
well known that ¥ (t) = iAt —%aztz. In order to show that E[U|V] = E[U] ae.itis
enough to prove that,

E[Uue™V]| = E[U]E[e""] (2.10)

by lemma (2.1). By Lemmas (2.3) and (2.2) and the condition (2.9), it follows that
E[ue¥] = —i (f, a@®y'[sb(®)] dt) exp ([, wlsb(t)] dt )

B

= —i (f a(t)y'[sb(t)] dt)E[e"SV]
AB

= —i < j a(t){il — a%sb(t)} dt> E[e"V] (2.11)
A

B
=i (f ila(t) dt) Ele™"]

A
- { f Bla(t) dt} E[e"]
A

It can be shown easily that E[U] = A ff a(t)dt which proves that
E[Ue®"] = E[U]E[e™"]
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in view of (2.13). This completes the proof of the “only if” part.

“If” part. Let U and V be as defined in the theorem. Let y(.) denote the
logarithm of the characteristic function X(t + 1) — X(t). Further suppose that U has
constant regressononV, i.e.,

E[U|V] = E[U] ae (2.12)

Thisimplies that
E[Ue®V] = E[U]E[e™"]

By lemma2.1. Hence by Lemma 2.1 and 2.3 it follows that

B B
—i (f a(t)yY'[sb(t)] dt) exp (f Y[sb(t)] dt >
A A

= E[Ue"] (2.13)
= E[U]E[e™"]

= E[Ulexp ([, wlsb(®)] dt )
The above equality gives the relation
B
f a(®)Y'[sb(t)] dt = iE[U] (2.14)
A
For any real number s. Since the process has moments of all orders by assumption,

Y(.) has derivatives of all orders and the differentiations with respect to s under
integral signin (2.14) are valid. Differentiating once with respect to s, we get that

B
f Y'"[sb(t)]a(t)b(t)dt =0 (2.15)
A

Let s=0. Then we have

B
"(0) f (b0 dt = 0
A

Y'"'(0) is different from zero, since by assumption the increments of the process
have non — degenerate distributions hence it follows from the above equality, that

B
f a(t)b(t)dt =0 (2.16)
A

Differentiating k times with respect to s under the integra sign in (2.15), we
obtain that

f Blp("’ [sb()] a(t)[b(D)]**dt =0 (2.17)

A

For k > 3 where ¥%(s) denotes the kth derivative of y(.) a s. Takes =0 in
(2.17). Then we have,
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B
p®(0) f aOBOTF dt = 0 (2.18)
A

For k > 3. Since the a(.), b(.) have the property that ff a(t)b(t) dt = 0 implies
that [, a()[b(£)]*~* # 0 for k > 1, (2.17) and (2.18) together imply that
Y®(0)=0 fork =3 (2.19)

Which shows that (t) = iAt — %aztz where —o0 < 1 < 0,02 > 0 for some A

and 2. Hence the process {X(t), t € T} isaWiener process. This completes the proof
of the“If” part.
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