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ABSTRACT 
 

In this paper, we study oscillatory behavior of the fractional difference 
equations of the following form 
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where ∆α denotes the Riemann-Liouville difference operator of order α, 0 < α 
≤ 1. We establish some oscillation criteria for the equation using Riccati 
transformation technique and Hardy inequality. Examples are provided to 
illustrate our main results. 

 
 
1. INTRODUCTION 
Oscillatory behavior of fractional differential equations have been investigated by few 
authors, see papers [2]-[8] and the theory of fractional differential equations are 
presented in the books, see [13]-[15]. But the fractional difference equations are 
studied by very few authors, see [9]-[12]. Motivated by [3] and [8], we study the 
following fractional difference equation of the form 
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(1)  

where ∆α denotes the Riemann-Liouville difference operator of order 0 < α ≤ 1. 
 In this paper, we make the following assumptions. 
(H1). ( )p t  and ( )q t are positive sequences and , :f g R R→ are continuous functions 
with ( ) 0, ( ) 0 for 0xf x xg x x> > ≠ and there exist positive constants 1 2,k k such that 

1 2
( ) ,
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for all 0x ≠ . 

(H2). 1 ( , )g C R R− ∈  is a continuous function with 1( ) 0 for 0x g x x− > ≠  and there 
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exists some positive constant 1ν such that 1 1 1
1( ) ( ) ( )g xy g x g yν− − −≥ . 

 A solution x(t) of (1) is said to be oscillatory if it is neither eventually positive nor 
eventually negative; otherwise, it is nonoscillatory. Equation (1) is said to be 
oscillatory if all its solutions are oscillatory. 
 
 
2. PRELIMINARIES AND BASIC LEMMAS 
In this section, we introduce some preliminary results of discrete fractional calculus, 
which will be used throughout this paper. 
 
Definition 2.1. (see [11]) Let 0ν > . The ν - th fractional sum of f  is defined by 
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where f is defined for s = a mod (1) and fν−Δ is defined for ( ) mod (1)t a ν= + and 
( ) ( 1)t .

( 1)
t

t
ν

ν
Γ +

=
Γ − +  

The fractional sum fν−Δ maps functions defined on aN  to 

functions defined on aN ν+ . 
 
Definition 2.2. (see [11]) Let 0 and m -1< < m,μ μ> where m denotes a positive 
integer, m = μ⎡ ⎤⎢ ⎥ . Set mν μ= − . The μ  -th fractional difference is defined as 

( ) ( ) ( ).m mf t f t f tμ ν ν− −Δ =Δ =Δ Δ  
 
Lemma 2.3. Let x(t) be a solution of (1) and let 
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(2)  

 Then 

 ( ( )) (1 ) ( ( )).G t x tααΔ =Γ − Δ  (3)  
 
Proof: 
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which implies 

 
(1 )( ( )) (1 ) ( ) (1 ) ( ).G t x t x tα αα α− −Δ =Γ − ΔΔ =Γ − Δ  

 In order to discuss our results in Section 3, now, we state the following lemma. 
 
Lemma 2.4. (Hardy et al. see [1]) If X and Y are nonnegative, then 
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1 ( 1) for m >1m m mmXY X m Y− − ≤ −  (4)  
where equality holds if and only if X = Y. 
 
 
3. MAIN RESULTS 
Theorem 3.1. Suppose that (H1) − (H2) and 
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hold. Furthermore, assume that there exists a positive sequence b(t) such that 
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solution of (1) is oscillatory. 
 
Proof. Suppose the contrary that x(t) is a nonoscillatory solution of (1). Without loss 
of generality, we may assume that x(t) is an eventually positive solution of (1). Then 
there exists t1≥ t0 such that 
 1( ) 0 and ( ) 0 forx t G t t t> > ≥  (7)  
where G is defined as in (2). Therefore, it follows from (1) that 

 1( ( ) ( ( ))) ( ) ( ( )) 0 for t .p t g x t q t f G t tαΔ Δ =− < ≥  (8)  
 Thus ( ) ( ( ))p t g x tαΔ is an eventually non increasing sequence. First we show that 

( ) ( ( ))p t g x tαΔ  is eventually positive. Suppose there is an integer t1> t0 such that 

1 1( ) ( ( )) 0p t g x t cαΔ = < for 1t t≥  so that  
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which implies that 
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 Summing both sides of the last inequality from t1 to t − 1, we get 
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which contradicts the fact that ( ) 0G t > . Hence ( ) ( ( )) 0p t g x tαΔ >  eventually. Define 
the function ( )tω  by the Riccati substitution 
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 Then we have ( ) 0tω >  for t≥ t1. It follows that 
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 Using the above inequality 
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 Using the inequality (4), we have 
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 Letting t → ∞, we get 
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which contradicts (6). The proof is complete. 
 

Theorem 3.2. Suppose that (H1) to (H2) and
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solution of (1) is oscillatory. 
 
Proof. Suppose the contrary that x(t) is a non oscillatory solution of (1). Without loss 
of generality, we may assume that x(t) is an eventually positive solution of (1). We 
proceed as in the proof of Theorem (3.1). Multiplying (11) by H(t, s) and summing 
from t1 to t − 1, we obtain 
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 Using the summation by parts formula, we obtain 
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 Letting t → ∞, we have 
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 which is a contradiction to (11). The proof is complete. 
 
Example 3.3. Consider the following fractional difference equation 
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we find that (H1) − (H2) and (5) hold. We will apply Theorem (3.1) and it remains to 
show that condition (6) is satisfied. Taking b(s) = s, we obtain 
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which implies that (6) holds. Therefore, by Theorem (3.1) every solution of (16) is 
oscillatory. 
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