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Abstract 
 

In this paper we prove some results on the location of zeros of a certain class 
of polynomials. These results generalize some known results in the theory of 
the distribution of zeros of polynomials. Hence our result will considerably 
improve the bounds by relaxing and weakening the hypothesis in some cases. 
Here we obtain certain generalizations and refinements of well known 
Enestrom – Kakeya Theorem for a polynomial under much less restrictions on 
its coefficients. 
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INTRODUCTION 
Many results on the location of zeros of polynomials are available in the literature. 
Among them the Enestrom-Kakeya theorem [4] given below is well known in the 
theory of zero distribution of polynomials. 
 

Theorem (i). For an nth-order polynomial P(z) = i
n

i
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0

, assume 

 ܽ௡ ≥ ܽ௡ିଵ ≥ ܽ௡ିଶ  ≥------≥ܽଵ ≥ܽ଴ > 0  1 
 
 Then P(z) has all its zeros in the disk |z| ≤ 1. 
 
 In the literature [1-18], diverse attempts have been made for generalizing the 
Enestrom-Kakeya theorem to polynomials and analytic functions.  
 Recently, Choo[5] also proved the following theorems: 
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Theorem (ii). Consider an nth-order complex polynomial P(z) = i
n
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, with Re(ai) 

= αi and Im(ai ) = βi, i = 0, 1, 2-----n, and assume that for some k and r, and for 

 21, and t > 0,  

  (2) 
 
 Then P (z) has all its zeros in R1 ≤ |z| ≤ R2 where 
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Theorem (iii).Consider an nth-order complex polynomial P(z) = i
n
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= αi and Im(ai ) = βi, i = 0, 1, 2-----n, and assume that for some k,   and for some t > 
0,  
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 Then P(z) has all its zeros in R1 ≤ |z| ≤ R2 where 
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 Now we prove the following theorem:- 
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Theorem 1. Consider an nth-order complex polynomial P(z) = i
n

i
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, with Re(ai) = 

αi and Im(ai ) = βi, i = 0, 1, 2-----n, and assume that for some p and q, and for δ, η > 0 
and 0 ≤ τ, σ ≤ 1,  
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 Then P (z) has all its zeros in R1 ≤ |z| ≤ R2 where 
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Proof: Firstly we consider the case where t = 1. For the outer bound, consider a polynomial 
 G(z)= (1-z)P(z) 
 =-αnzn+1 +{(αn–δαn)+(δαn – αn-1)}zn +(αn-1-αn-2)zn-1 +----+(αp+1-αp)zp+1 +(αp-αp-1)zp+ 
  (αp-1-αp-2)zp-1 +-----+{(ߙଵ-τߙ଴)+( τߙ଴ –ߙ଴) }z+ ߙ଴+ i[-βnzn+1+{(βn–ηβn)+(ηβn-βn-1)}zn+  
  (βn-1-β n-2)zn-1 +----+ (βq+1-βq)zq+1+ (βq-βq-1)zq+ (βq-1-βq-2)z q-1 

 +--------------+{(β1-σβ0)  
  (σβ0 – β0)}z + β0]   (9) 
 
 Now if |z|>1, ଵ

|௭|೙షೕ
 < 1, j= 0, 1, 2---n-1,  

 |G(z)| ≥ |z|n {|an||z|-M12 } (10) 
 
 Where M12 = |(δ-1)ߙ௡|+ |(η-1)βn|-(δαn + ηβn )+ 2(ߙ௣ + βq) − (τߙ଴ +  σߚ଴) +(1 −
τ)ߙ଴ + 
  (1 − σ)ߚ଴ + |ܽ଴| (11) 
 

 Then |G(z)| ≥ 0 if |z| > 12
12 R

a
M

n

  and all the zeros of P(z) with modulus greater 

then one lie in the disk |z| ≤ R12.It can be shown that R12 ≥ 1. Consequently the zeros 
of P(z) with modulus less than or equal to one are already contained in the disk |z| ≤ 
R12. 
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 For the inner bounds, again consider G(z) = H(z) + a0 (12)  
 
 If |z|< 1 then  
 Therefore |H(z)| ≤ M11 (13) 
 
 Where  
 M11 = |an| + |(δ-1)α௡|+ |(η-1)βn|-(δαn + ηβn )+ 2(αp+βq) − (τα଴ +  σβ0) + 
  (1 − τ)α଴ + (1 − σ)β0 (14) 
 
 Since H(0) = 0, it follows that Schwarz lemma that  
 |H(z)| ≤ M11|z| for |z| < 1 
 Then |z| < 1, G(z) ≥ |a0|-|H(z) | ≥ |a0|-M11|z| > 0  (15) 
 
 If |z| < |௔బ|

ெభభ
 = R11 then it can be shown that R11 ≤ 1. Hence if t = 1 then all the zeros 

of P(z) lie in the disk R11≤ |z| ≤ R12.  (16) 
 
 It is now easy to find the result of the above theorem follows from the result 
applicable to P(tz). Hence the proof of the above theorem is complete. 
 
Corollary:-If in the above theorem we substitute for each of the above parameters τ 
and σ equal to unity then the above results coincides with results obtained by Choo[5].  
 
 
Conclusion:- 
Here in our theorem we showed the refinement over Choo[5]. 
 
 
References:  
 
[1]  A. Aziz and B.A. Zargar, Some extensions of Enestrom –Kakeya theorem, 

Glasnik mathematicki 31(1996), 239-244. 
[2]  A. Aziz and Q.G. Mohammad, On zeros of certain class of polynomials & 

related analytic function. J. Math Anal. Appl. 75(1980), 495-502.  
[3]  A. Aziz, W. M. Shah, On the zeros of polynomials and related analytic 

functions, Glasnik Mat.33 (1998), 173-184. 
[4]  A. Aziz, W. M. Shah, On the location of zeros of polynomials and related 

analytic functions, Nonlinear Studies 6(1999), 91-101.  
[5] Y. Choo. Some Results on the zeros of polynomials and related analytic 

functions, Int. Journal of Math. Analysis, 5 (2011), 1741-1760. 
[6]  K. K. Dewan and N. K. Govil, On the Enestrom –Kakeya theorem, J. Approx. 

Theory 42(1984), 239-246.  
[7]  K. K. Dewan and M.Bidkam, On the Enestrom –Kakeya theorem, J. 

Math.Appl.180(1993), 29-36. 
[8]  N. K. Govil and Q. I. Rehman, On the Enestrom –Kakeya theorem, Tahoku 



title 97 
 

 

Math J.20 (1986), 126-136.  
[9]  N. K. Govil and G. N. McTune, Some extensions of Enestrom –Kakeya 

theorem, International J. Applied mathematics, 11( 2002), 245-253.  
[10]  M.H. Gulzar, on the zeros of a polynomial with restricted coefficients, Research 

Journal of Pure Algebra-1( 2011), 205-208. 
[11]  M.H. Gulzar, On the Number of Zeros of a Polynomial in a Prescribed Region, 

Research jour. Of Pure Algebra-2(2) (2012), 35-46.  
[12]  A. Joyal, G. Labelle and Q. I. Rehman, On the location of zeros of polynomial, 

Canadian Mathematics Bull, 10(1967), 53-63. 
[13]  M. Marden, Geometry of polynomials, math surveys 3; American Mathematics 

Society Providence. R.I (1966) 
[14]  B.L. Raina et. al., Sharper Bounds for the zeros of Polynomials Using Enestrom 

Kakeya Theorem, Int., Journal of Math Analysis, V4 (2010), 861-872  
[15] B. L. Raina et. al., Sharper bounds for zeros of complex polynomials, 

International Journal of Mathematical Archive 3(2012), 3518-3524 
[16] B. L. Raina et. al., Some generalization of Enestrom Kakeya theorem, Research 

Journal of Pure Algebra-2( 2012), Page: 305-311 
[17]  N.A. Rather and S.Shakeel Ahmed, A remark on the generalization of Enestrom 

–Kakeya theorem. Journal of analysis & computation, 3(2007), 33-41  
[18] W M Shah and A Liman. On Enestrom Kakeya theorem and related analytic 

functions, Proc. Indian Acad. Sci. (Math. Sci.), 117( 2007), 359-370. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



98  Ajeet singh1, Neha and S.K.Sahu 
 

 

 
 
 
 
 
 
 
 
 
 


