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ABSTRACT 
 

The notion of T-regular sets was introduced in vector spaces by P. Veeramani 
[J. Math. Anal. Appl. 167 (1992), 160-166] to generalize a well known fixed 
point theorem of F. E. Browder: If T is a nonexpensive self map on a weakly 
compact convex subset of a uniformly convex Banach space then T has a fixed 
point. We extend this notion of T-regular sets to convex metric spaces and use 
it to prove results on the invariance of best approximation in such spaces 
thereby generalizing some of the earlier known results in metrizable 
topological vector spaces.  
The notion of T-regular sets was introduced in vector spaces by Veeramani [8] 
to generalize a well known fixed point theorem of Browder(Corollary 1. 3[8]) 
and to obtain a result on invariant approximation (Corollary 2. 2[8]) in Banach 
spaces. This class of nonconvex sets was extensively used by Khan and 
Hussain [3] to study iterative approximation of fixed points of non-expansive 
mappings. Khan, Bano and Hussain [4] also obtained best approximation 
results using fixed points and obtained Corollary 2. 2 of Veeramani [8] 
without the assumptions of uniform convexity of the space and non-
expansiveness of the mapping in the setting of metrizable topological vector 
spaces(Theorem 2. 9[4] ). We extend this notion of T-regular sets to convex 
metric spaces and generalize some results of Khan and Hussain [3] and of 
Khan, Bano and Hussain [4] proved in metrizable topological vector spaces to 
convex metric spaces.  
To start with, we recall a few definitions.  
Let M be a non-empty subset of a metric space (X, d). For any xX, the set 
PM(x) = {yM: d(x, y) = d(x, M)}, where d(x, M) = inf{ d(x, z): zM } is 
called the set of best approximants to x in M.  
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The set M is said to be approximatively compact if for every x  X and every 
sequence <xn> in M with lim d(x, xn) = dist(x, M), there exists a subsequence < inx > 
converging to an element of M.  
 For a metric space (X, d) and I = [0, 1], a continuous mapping W: XXI  X is 
said to be Takahashi convex structure (TCS) on X if for all x, y, u X and t  [0, 1],  
 d(u, W(x, y, t))  t d(u, x) + (1-t) d(u, y).  
 A metric space (X, d) with a Takahashi convex structure is called a convex metric 
space [6].  
 A normed linear space and each of its convex subsets are simple examples of 
convex metric spaces. There are many convex metric spaces which are not normed 
linear spaces (see [6]).  
 A convex metric space (X, d) is said to be strict TCS [7] if it has the property that 
whenever wX and there is (x, y, t)  XXI for which d(z, w)  t d(z, x) + (1-t) d(z, 
y), for every z X then w = W(x, y, t).  
 A convex metric space (X, d) is said to satisfy Property (III) [2], if 
 d(W(x, y, t), W(u, v, t))  t d(x, u) + (1-t) d(y, v).  
 for x, y, u, v  X and t  [0, 1].  
 A convex metric space (X, d) is said to be strictly convex [1] if for all x, y, z  X 
and r > 0, d(x, z)  r, d(y, z)  r imply d(W(x, y, 1/2), z) < r unless x = y.  
 A convex metric space (X, d) is said to be uniformly convex [1] if there 
corresponds to each pair of positive numbers (, r) a positive number  such that for 
all x, y, z  X, d(x, z)  r, d(y, z)  r and d(x, y)   imply d(W(x, y, 1/2), z)  r-.  
 Clearly every uniformly convex metric space is strictly convex but converse is not 
true[1].  
 A subset M of a convex metric space (X, d) is said to be convex[6] if W(x, y, t) 
M whenever x, y  M and t I, and it is said to be T-regular if  
(i)T: M  M,  
(ii)W(x, Tx, 1/2)  M for each x  M.  
 
The following results are easy to prove: 
(a)  Every convex set invariant under a map T is a T-regular set but a T-regular set 

need not be convex.  
(b)  Union and intersection of T-regular sets are T-regular.  
(c) If T: XX is a continuous mapping and M is T-regular then cl(M)  closure of M 

is T-regular.  
 
 Let M = {a, b, W(a, b, 1/2)}, a  b be a subset of a strict TCS space (X, d). Define 
T: MM as T(a) = b, T(b) = a, T(c) = c, where c = W(a, b, 1/2). Since W(c, Tc, 1/2) 
= W(c, c, 1/2) = c and in a strict TCS space W(a, b, 1/2) =W (b, a, 1/2) (see[7]-
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propositions 1. 2 and 2. 4), the set M is compact and T-regular but not convex.  
 Define the bisection map F: MM as Fx = W(x, Tx, 1/2). As W(a, Fa, 1/2) =W(a, 
W(a, Ta, 1/2), 1/2) = W(a, W(a, b, 1/2), 1/2)  M, M is not F-regular.  
 If T is non-expansive map on a T-regular set M of a convex metric space (X, d) 
then the bisection map F may not be non-expansive. However, we have  
 
Proposition1. If (X, d) is a convex metric space with Property (III) and T is non-
expansive on a T-regular set M then the bisection map F is non-expansive on M..  
 
Proof. Consider 
d(Fx, Fy) = d(W(x, Tx, 1/2), W(y, Ty, 1/2 )) 
 ½ d(x, y) + ½ d(Tx, Ty) 
 ½ d(x, y) + ½ d(x, y) 
= d(x, y) 
for all x, y  M.  
 
For a subset M of a metric space (X, d), let D(M) = sup{d(x, y): x, y  M}  D be the 
diameter of M. A point xo M is called a diametral point of M if sup{d(xo, y): 
 y  M }= D(M).  
 For T-regular sets we have: 
 
Proposition2. Let (X, d) be a uniformly convex metric space and M a bounded T-
regular subset of X. Then either each point of M is a fixed point of T or there exists a 
nondiametral point u of M i. e. a point u  M such that sup{d(u, y): y  M }(u, 
M)< D(M).  
 
Proof. Suppose there exists some x  M such that Txx. Consider u = W(x, Tx, 1/2). 
Then uM. We claim that u is the desired point.  
 Let yM be arbitrary. Then d(y, Tx)  D and d(y, x)  D. Let ε = d(x, Tx) > 0. By 
the uniform convexity of the space there exists a  > 0 such that d(y, W(x. Tx, 1/2))  
D- i. e. d(y, u)  D- and so sup { d(u, y): yM }  D- < D i. e. u  M is non-
diametral point.  
 
Note1. For metrizable uniformly convex topological vector spaces, Proposition 2 was 
proved in [3] and for uniformly Convex Banach spaces it was proved in [8].  
 For strictly convex metric spaces, we have  
 
Proposition3. Let (X, d) be strictly convex metric space, x X and M a subset of X. 
If y1  y2  PM(x) then W(y1, y2, t)  M, 0 < t < 1.  
 
Proof. y1, y2  PM(x) d(x, y1) = d(x, M) = d(x, y2). Since (X, d) is strictly convex, 
d(x, W(y1, y2, t)) < d(x, M) and so W(y1, y2, t)  M.  
 
Note 2. For strictly convex metric linear spaces, Proposition 3 was proved in [5].  
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 Using Proposition 3, we prove the following result on invariant approximation:  
 
Proposition 4. Let (X, d) be strictly convex metric space, M any subset of X and 
T:MM. If PM(x) is non-empty and T-regular for any xX, then each point of PM(x) 
is a fixed point of T.  
 
Proof. Suppose for some uPM(x), u  Tu. Then by Proposition 3, W(u, Tu, 1/2)M 
and so it cannot be in PM(x). Since PM(x) is T-regular, we must have u=Tu i. e. each 
best approximation of x is a fixed point of T.  
 
Note 3. For strictly convex metrizable topological vector spaces, Proposition 4 was 
proved in [3].  
 The following theorem on invariant approximation generalizes and extends 
Theorem 2. 9 [4] to strictly convex metric spaces:  
 
Theorem1. Let M be a non empty T-regular subset of strictly convex metric space (X, 
d) and u a point of X. Suppose that d(Tx, u)  d(x, u) for all xM. Then each x in M 
which is a best approximation to u, is a fixed point of T provided one of the following 
conditions hold: 
M is closed and T is a compact mapping i. e. T(M) is contained in a compact subset of 
M.  
M is proximinal.  
M is approximatively compact.  
 
Proof. Suppose (i) holds. Let r = d(u, M). Then there is a sequence <yn> in M such 
that lim d(u, yn) = r. This sequence <yn> is a bounded sequence. As T is compact, 
cl({Tyn}) is a compact subset of M and so <Tyn> has a convergent subsequence 
<Tyni>xM. Consider 
 r  d(u, x) = lim d(u, Tyni)  lim d(u, yni) = r 
and so xPM(u). Also, if y PM(u) then TyM and r  d(Ty, u)  d(y, u) = r imply  
 TyPM(u), so d(y, u) = r = d(Ty, u). Therefore, by the convexity of X, d(u, W(y, 
Ty, 1/2)) r  
and hence W(y, Ty, 1/2)PM(u) as W(y, Ty, 1/2)M i. e. PM(u) is T-regular. The 
result now follows from Proposition 4.  
 Suppose (ii) holds. Since M is proximinal, PM(u) is non-empty and so result 
follows as in (i).  
 Suppose (iii) holds. Since M is approximatively compact, M is proximinal (see 
[1]) and the proofs follows from (ii).  
 By applying Theorem1, we obtain another result on invariant approximation in 
strictly convex metric spaces.  
 
Theorem2. Let (X, d) be a strictly convex metric space and T: XX be a mapping. If 
M is a non-empty T-regular subset of X, uX\M is such that Tu=u and T is a 
generalized non-expansive map i. e.  
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 d(Tx, Ty)   d(x, y) +  [d(x, Tx)+d(y, Ty)] +  [d(x, Ty)+d(y, Tx)]  
for all x, yX, where , ,  are real numbers with +2+2 1. Then each xPM(u) 
is a fixed point of T provided one of the conditions (i)-(iii) of Theorem 1 hold: 
 
Proof. Since 
d(Tx, Tu)   d(x, u) + [d(x, Tx) + d(u, Tu)] +  [d(x, Tu) + d(u, Tx)] 
  d(x, u) +  d(x, Tx) +  [d(x, u) + d(Tu, Tx)] 
  d(x, u) +  [d(x, u) +d(u, Tx)] +  [d(x, u) + d(Tu, Tx)] 
 This gives 
 d(Tx, Tu)  {(++) / (1--)}d(x, u).  
 Therefore d(Tx, Tu)  d(x, u) for all xX. The result now follows from 
Theorem1.  
 
Note 4. For strictly convex metrizable topological vector spaces, Theorem 2 was 
proved in [4]. It may be remarked that Theorem 2 is valid even if T is only a quasi 
non-expansive mapping i. e. it satisfies d(Tx, Tu)  d(x, u) for all xX and uF(T).  
 The following example justifies Proposition 4, Theorems1 and 2.  
 
Example[8]. Let M = [-2,-1]  [1, 2]. Define T:MM as  

  
 Then all the conditions of the above mentioned results are satisfied. PM(o) = {-1, 
1} and each point of PM(o) is a fixed point of T.  
 Using properties of T-regular sets, we prove the following theorem: 
 
Theorem 3: Let K be a non empty compact T-regular subset of a uniformly convex 
metric space (X, d) and for each closed T-regular subset F of K with D(F) > 0 there 
exists some (F), 0 < (F) < 1 such that 
 d(Tx, Ty)  max. {d(x, y),  D(F)} for all x, y  F.  
 Then T has a fixed point in K.  
 
Proof: Let  be the collection of all non-empty closed T-regular subsets of K. In 
view of fact that union and intersection of T-regular sets are T-regular, one can use 
Zorn’s Lemma to get a minimal element, say F, of .  
 Suppose for some x in F, x  Tx. Since F is a bounded T-regular set, Proposition 2 
implies that there exists x0  F and , 0 <  < 1 such that  
 (x0, F)   D(F) 
 Also, by hypothesis, there exists , 0 <  < 1 such that d(Tx, Ty)   D(F).  
 Let 0 = max{, }, F0 = {z  F: (z, F)  0 D(F)}. Then F0 is non empty as x0 
 F and F0 is a closed set. Let z  F0 then d(Tz, Ty)  d(z, y)  0 D(F) for all y  F. 
Therefore T(F)  U  B0 D(F) [Tx], a closed ball with centre Tx and radius 0 D(F). 
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This gives T(FU)  FU. Since F is T-regular and U is a convex set, FU is T-
regular and so is in the collection . Hence by the minimality of F, Tx  F0 i. e. T(F0) 
 F0. Also F0 is a T-regular set and so F0  . But D(F0) < D(F) if F contains more 
than one point, a contradiction. Therefore, F contains exactly one element and this is 
invariant under T. Hence Tx = x 
 
Corollary 1. Let K be a non empty compact T-regular subset of uniformly convex 
metric space (X, d) and T: KK be a non-expensive mapping then T has a fixed 
point.  
 
Corollary 2. Let K be a non empty compact convex subset of uniformly convex 
metric space (X, d) and T: KK be a non-expensive mapping then T has a fixed 
point.  
 
Remark: Theorem 3 for weakly compact T-regular subsets of uniformly convex 
Banach spaces was proved by Veeramani [8] and the above proof is a minor 
modification of the one given in [8].  
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