The Wiener Related Indices of Some Graph Operations

A. Arivalagan¹, K. Pattabiraman² and V.S.A. Subramanian³

¹Department of Mathematics Sethupathy Govt. Arts College, Ramanathapuram–623 502, India ²Department of Mathematics Annamalai University, Annamalainagar–608 002, India ³Department of Mathematics APSA College, Thirupattur, India E-mail: ¹arivalaganalagaiah@gmail.com, ²pramank@gmail.com, ³manivsas@gmail.com

Abstract

The Wiener index of a connected graph *G*, denoted by W(G), is defined $\operatorname{as}_{\frac{1}{2}\sum_{u,v\in V(G)}d_G(u,v)}$.Similarly, hyper-Wiener index of a connected graph *G*,denoted by WW(G), is defined as $\frac{1}{2}W(G) + \frac{1}{4}\sum_{u,v\in V(G)}d_G^2(u,v)$.In this paper, we present the explicit formulae for the Wiener, hyper-Wiener and reverse Wiener indices of some graph operations. Using the results obtained here, the exact formulae for Wiener, hyper-Wiener and reverse Wiener indices of some important classes of graphs are obtained.

Keywords: Wiener index, hyper-Wiener index, reverse Wiener index MSC: 05C12, 05C76.

1. Introduction

For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The maximum eccentricity is its diameter, denoted by D(G). A topological index is a numerical quantity related to a graph that is invariant under graph automorphisms. The distance between the vertices u and v of G is denoted by $d_G(u, v)$ and it is defined as the number of edges in a minimal path connecting them. A topological index related to distance function d(-, -) is called a distance based topological index." In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds [2]. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index.

The Wiener index [14] is one of the oldest molecular-graph-based structuredescriptors [13]. Its chemical applications [11] and mathematical properties are well studied [1]. Let G be a connected graph. Then Wiener index of G is defined as

$$W(G) = \frac{1}{2} \sum_{u,v \in V(G)} d_G(u, v)$$

with the summation going over all pairs of vertices of G. The hyper-Wiener index of acyclic graph was first introduced by Randic [12]. Then, as a generalization of the Wiener index, Klein *et al.* [7] generalized Randic's definition for all connected graphs. The hyper - Wiener index of a connected graph G, denoted by WW(G), is defined as

$$WW(G) = \frac{1}{2}W(G) + \frac{1}{4}\sum_{u,v\in V(G)} d_G^2(u,v),$$

where $d_G^2(u, v) = (d_G(u, v))^2$. Applications of the hyper-Wiener index as well as its calculation are well explained in [6, 8, 9].

The reverse Wiener index was proposed by Balaban *et al.* in 2000[15], it turns out that this index is important for a reverse problem and also found applications in modeling of structure-property relations [15, 16]. The reverse-Wiener index is defined as follows

$$\Lambda(G) = \frac{1}{2}n(n-1)D(G) - W(G),$$

where *n* is the number of vertices and D(G) is the diameter of *G*. Some mathematical properties of the reverse Wiener index may be found in [18, 19].

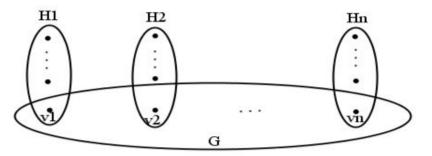


Fig. 1: Cluster of two graphs G and H with root vertex vi=h, where Hi is the copy of H, for i in {1,2,..,N}

The cluster $G{H}$ of two graphs G and H is defined as the graph obtained by taking one copy of G and |V(G)| copies of a rooted graph H and by identifying the root of the

i- th copy of *H* with *i* - th vertex of *G*, for i = 1. In this paper, we present the explicit formulae for the Wiener, hyper-Wiener and reverse Wiener indices of some graph operations. Using the results obtained here, the exact formulae for Wiener, hyper-Wiener and reverse Wiener indices of some important classes of graphs are obtained.

2. Wiener Index

In this section we compute the Wiener index of cluster of two graphs.

We denote the root vertex of *H* by *h* and the copy of *H* whose root is identified with the vertex $x \in V(G)$ by H^x . The distance between u, v of $G\{H\}$ is given by

$$d_{G\{H\}}(u,v) = \begin{cases} d_H(u,h) + d_G(x,y) + d_H(h,v), & if \ u \in V(H^x), v \in V(H^y) \ x \neq y \\ d_H(u,v), & if \ u, v \in V(H^x). \end{cases}$$

Theorem 2.1. Let G and H be graphs with n_1 and n_2 vertices and let the copies of H used in the construction of $G\{H\}$ be rooted in vertex h. Then $W(G\{H\})=n_2^2W(G) + n_1W(H) + n_1(n_1 - 1)n_2D_H(h)$, where $D_H(h) = \sum_{u \in V(H)} d_H(u, h)$.

Proof.

$$W(G\{H\}) = \frac{1}{2} \sum_{u,v \in V(G\{H\})} d_{G\{H\}}(u,v)$$

$$= \frac{1}{2} \left(\sum_{x \in V(G)} \sum_{u \in v(H^{x})} \sum_{v \in V(H^{x})} d_{H}(u,v) + \sum_{x \in V(G)} \sum_{y \in V(G)-x} \sum_{u \in v(H^{x})} \sum_{v \in V(H^{y})} (d_{H}(u,h) + d_{G}(x,y) + d_{H}(h,v)) \right)$$

$$= n_{1}W(H) + \frac{n_{1}(n_{1}-1)}{2} n_{2}D_{H}(h) + n_{2}^{2}W(G) + \frac{n_{1}(n_{1}-1)}{2}D_{H}(h)$$

$$= n_{2}^{2}W(G) + n_{1}W(H) + n_{1}(n_{1}-1)n_{2}D_{H}(h).$$

Using above theorem we have following corollary.

Corollary 2.2 Let *G* be graph of *n* vertex and let the copies of *G* used in the construction of $G\{G\}$ be rooted in vertex *h*. Then $W(G\{G\})=n(n+1)$ W(G) + $n^2(n-1)$ $D_G(h)$, where $D_G(h) = \sum_{u \in V(G)} d_G(u, h)$.

We quote the following lemma for our future reference.

Lemma 2.3. Let P_n , C_n , S_n , and W_n denote the path, cycle, star and wheel on n vertices respectively.

(1) For
$$n \ge 3$$
, $W(C_n) = \begin{cases} \frac{n^3}{8}, n \text{ is even} \\ \frac{n(n^2-1)}{8}, n \text{ is odd.} \end{cases}$

(2)For
$$n \ge 2$$
, $W(P_n) = \frac{n(n^2 - 1)}{6}$.
(3) For $n \ge 1$, $W(S_n) = (n - 1)^2$
(4) For $n \ge 4$, $W(W_n) = (n - 1)(n - 2)$

Consider the square comb lattice Cq(N) with open ends where $N=n^2$ is the number of vertices of this graph, see Fig. 2. This graph can be represented as the cluster graph $P_n\{P_n\}$, where the root of P_n is on its vertex of degree 1.

Now using Corollary 2.2 and Lemma 2.3, we obtain the exact Wiener index of the square comb lattice Cq(N).

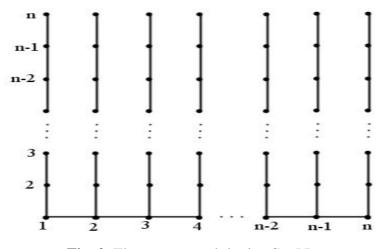
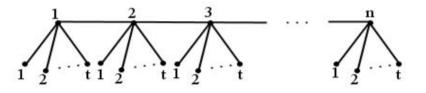


Fig. 2: The square comb lattice Cq (N)

Example 2.4. W(Cq(N)= $\frac{n^2(n-1)}{6}$ (4 n^2 – n + 1).

For a given graph G, its t-fold bristled graph $Br_{s_t}(G)$ is obtained by attaching t vertices of degree 1 to each vertex of G. This graph can be represented as the cluster of G and the star on t+1 vertices S_{t+1} , where the root of S_{t+1} is on its vertex of degree t. the t-fold bristled graph of a given graph is also known as its t- thorny graph. By using Theorem 3.1 and Lemma 3.3, we obtain the Wiener index of the t-fold bristled graph $Br_{s_t}(G)$.

Example 2.5. $W(Brs_t(G)) = (1+t)^2 W(G) + nt (nt+n-1).$



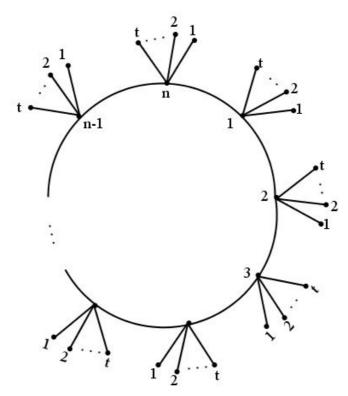


Fig. 3: The t-fold bristled graph of Path and Cycle on n vertices.

From the above formula and Lemma 2.3, the exact Wiener indices of the *t*-fold bristled graph of P_{n_i} and C_n , (see Fig. 3) are computed.

Example 2.6.1. W(Brs_t(P_n)) = $\frac{n}{6}(1+t)^2(n^2-1)+6t$ (nt+n-1).

2. W (Brs_t(
$$C_n$$
)) =
$$\begin{cases} \frac{n}{8}n^2(1+t)^2 + 8t(nt+n-1), & \text{if } n \text{ is even} \\ \frac{n}{8}(n^2-1)(1+t)^2 + 8t(nt+n-1), & \text{if } n \text{ is odd.} \end{cases}$$

Let $\{G_i\}_{i=1}^n$ be a set of finite pairwise disjoint graphs with $v_i \in V(G_i)$. The bridge graph $B\{G_1, G_2, \dots, G_n; v_1, v_2, \dots, v_n\}$ of $\{G_i\}_{i=1}^n$ with respect to the vertices $\{v_i\}_{i=1}^n$ is the graph obtained from the graphs G_1, G_2, \dots, G_n by connecting the vertices v_i and v_{i+1} by an edge for all $i=1, 2, \dots, n-1$, see Fig. 4.

We define
$$G_n(H, v) = B\{\underbrace{H, H, \dots, H}_{n \text{ times}}; \underbrace{v, v, \dots, v}_{n \text{ times}}\}$$
, (n times) which is the special

case of bridge graph. For example, let p_n be the path on n vertices $v_1, v_2, ..., v_n$, define $B_n = G_n(P_3, v_2)$, see Fig.5 (Polyethene when n = 4). As another example, let C_k be the cycle with k vertices and define $T_n = G_n(C_k, v_1)$, see Fig. 6 (when k = 3 and n = 5). As a final example, define the bridge graph $J_{n,r} = G_n(W_r, v_1)$, where W_r is the

Wheel graph on r vertices $v_1, v_2, ..., v_r$, such that $\deg(v_1) = r - 1$ and $\deg(v_i) = 3, i = 1, 2, ..., r$. By the definition of cluster, $B_n = P_n\{S_3\}, T_{n,3} = P_n\{K_3\}$ and $J_{n,r} = P_n\{W_r\}$.

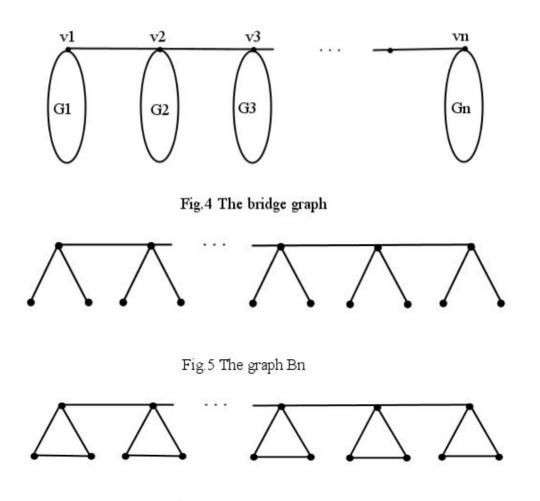


Fig.6 The graph T(n,3)

Example 2.7. Using Theorem 2.1, we obtain the Wiener indices of the following graphs.

- 1. $W(B_n) = \frac{n}{2}(3n^2 + 12n 7).$
- 2. $W(P_n\{K_r\}) = \frac{nr}{2}(rn^2 + 6nr 6n 4r + 3).$
- 3. $W(T_{n,3}) = \frac{3n}{2}(n^2 + 4n 3).$
- 4. $W(J_{n,r}) = \frac{n}{6}(r^2n^2 + 4r^2 + nr^2 nr 17r 12), r \ge 4.$

Let G be a connected graph. If we put two similar graphs G side by side, and any vertex of the first graph G is connected by edges with those vertices which are adjacent to the corresponding vertex of the second graph G and the resultant graph is denoted by $K_2 \cdot G$, then we have $V(K_2 \cdot G) = 2V(G)$ and $E(K_2 \cdot G) = 4E(G)$. Moreover, $K_2 \cdot G$ is the graph of K_2 and G with the vertex set $V(K_2 \cdot G) = V(K_2) \times V(G)$ and $(u_i, v_j)(u_k, v_r)$ is an edge of $K_2 \cdot G$ whenever $u_i = u_k$ and $v_j v_k \in E(G)$.

Theorem 2.8. Let G be a connected graph with n vertices. Then $W(K_2 \cdot G) = 4W(G) + 2n$.

Proof. By the definition of the Wiener index, we have

$$W(K_{2} \bullet G) =$$

$$\sum_{(u_{i},v_{j}),(u_{k},v_{r})\in V(K_{2}\bullet G),(u_{i},v_{j})\neq(u_{k},v_{r})} d_{K_{2}\bullet G}((u_{i},v_{j}),(u_{k},v_{r}))$$

$$= \sum_{(u_{i},v_{j}),(u_{k},v_{r})\in V(K_{2}\bullet G),j\neq r} d_{K_{2}\bullet G}((u_{i},v_{j}),(u_{i},v_{r}))$$

$$+ \sum_{(u_{i},v_{j}),(u_{k},v_{r})\in V(K_{2}\bullet G),i\neq k} d_{K_{2}\bullet G}((u_{i},v_{j}),(u_{k},v_{r}))$$

$$=$$

$$\sum_{u_{i}\in V(K_{2}),v_{j}} \sum_{v_{k}\in V(G),j\neq r} d_{G}(v_{j},v_{r}) +$$

$$\sum_{v_{j}\in V(G)} (2 + \sum_{v_{r}\in V(G),j\neq r} d_{G}(v_{j},v_{r}))$$

$$= 2 \sum_{v_{j}v_{k}\in V(G),j\neq r} d_{G}(v_{j},v_{r}) + \sum_{v_{j}\in V(G),j\neq r} d_{G}(v_{j},v_{r}) + 2n$$

$$= 4W(G) + 2n. \blacksquare$$

Let *G* be a connected graph. If we put two similar graphs *G* side by side, and any vertex of the first graph *G* is connected by edges with those vertices which are nonadjacent to the corresponding vertex (including the corresponding vertex itself) of the second graph *G* and the resultant graph is denoted by $K_2 \star G$, then we have $V(K_2 \star G) = 2V(G)$ and $E(K_2 \star G) = |V(G)|^2$. Moreover, $K_2 \star G$ is the graph of K_2 and *G* with the vertex set $V(K_2 \star G) = V(K_2) \times V(G)$ and $(u_i, v_j)(u_k, v_r)$ is an edge of $K_2 \star G u_i$ whenever $= u_k$ and $v_j v_k \in E(G)$ or $u_i \neq u_k$ and $v_j v_k \in E(G)$.

Theorem 2.9. Let G be a connected graph with n vertices. Then $W(K_2 \star G) = n(3n-2)$.

Proof. By the definition of the Wiener index, we have

$$W(K_{2} \star G) =$$

$$\sum_{(u_{i},v_{j}),(u_{k},v_{r})\in V(K_{2}\star G),(u_{i},v_{j})\neq(u_{k},v_{r})} d_{K_{2}\star G}((u_{i},v_{j}),(u_{k},v_{r}))$$

$$= \frac{1}{2} \sum_{u_{i}\in V(K_{2})} \sum_{v_{j}\in V(G)} (d_{K_{2}\star G}(u_{i},v_{j}) + 2(2n - d_{K_{2}\star G}(u_{i},v_{j}) - 1))$$

since for very vertex $(u_i, v_j) \in V(K_2 \star G)$, there $\operatorname{ared}_G(v_j) + n - 1 - d_G(v_j) + 1 = n$ neighbors, and $d_G(v_j) + n - 1 - d_G(v_j) = n - 1$ vertices with the distance 2 from itself

$$= \frac{1}{2} \sum_{u_i \in V(K_2)} \sum_{v_j \in V(G)} (n + 2(n - 1)) = n(3n - 2).$$

3. Hyper–Wiener index

In this section, first we compute the hyper Wiener index of $G\{H\}$. **Theorem 3.1.** Let *G* and *H* be graphs with n_1 and n_2 vertices and let the copies of *H* used in the construction of $G\{H\}$ be rooted in vertex *h*. Then $WW(G\{H\}) = n_2^2WW(G) + n_1WW(H) + 2n_2W(G)D_H(h) + \frac{n_1(n_1-1)}{2}(n_2D_H^2(h) + (D_H(h))^2)$,

Where

$$D_H(h) = \sum_{u \in V(H)} d_H(u, h) \text{ and } D_H^2(h) = \sum_{u \in V(H)} (d_H(u, h) + d_H^2(u, h))$$

Proof. WW(G{H}) = $\frac{1}{2}W(G) + \frac{1}{4}\sum_{u,v \in V(G\{H\})} d^2_{G\{H\}}(u,v)$

$$= \frac{1}{2} \left(\sum_{x \in V(G)} \sum_{u \in v(H^{x})} \sum_{v \in V(H^{x})} (d_{H}(u, v) + d_{H}^{2}(u, v)) \right)$$

+
$$\sum_{x \in V(G)} \sum_{y \in V(G) - x} \sum_{u \in v(H^{x})} \sum_{v \in V(H^{y})} (d_{H}(u, h) + d_{G}(x, y) + d_{H}(h, v))$$

+
$$(d_{H}(u, h) + d_{G}(x, y) + d_{H}(h, v))^{2}$$

=
$$\frac{n_{1}}{2} \sum_{u \in V(H^{x})} \sum_{v \in V(H^{x})} (d_{H}(u, v) + d_{H}^{2}(u, v))$$

+
$$\frac{1}{2} \sum_{x \in V(G)} \sum_{y \in V(G) - x} \sum_{u \in v(H^{x})} \sum_{v \in V(H^{y})} (d_{H}(u, h) + d_{H}^{2}(u, h)) + d_{G}(x, y)$$

128

The Wiener Related Indices of Some Graph Operations

$$+ d_{G}^{2}(x, y) + d_{H}(h, v) + d_{H}^{2}(h, v)2d_{H}(u, h)d_{G}(x, y) + 2d_{H}(u, h)d_{H}(h, v) + 2d_{G}(x, y)d_{H}(h, v)) n_{2}^{2}ww(G) + n_{1}WW(H) + 2n_{2}W(G)D_{H}(h) + \frac{n_{1}(n_{1}-1)}{2}(n_{2}D_{H}^{2}(h) + (D_{H}(h))^{2}).$$

Using above theorem we have the following corollary.

Corollary 3.2. Let G be a graph of n vertex and let the copies of G used in the construction of $G{G}$ be rooted in vertex h. Then

$$WW(G\{G\})=n(n+1)WW(G)+2nD_{G}(h)W(G) + \frac{n(n-1)}{2}(nD_{G}^{2}(h) + (D_{G}(h))^{2}, where D_{G}(h) = \sum_{u \in V(G)} d_{G}(u, h) and D_{G}^{2}(h) = \sum_{u \in V(G)} (d_{G}(u, h) + d_{G}^{2}(u, h)).$$

For our reference we quote the following lemma from[5].

Lemma 3.3. (1) For $t \ge 1$, WW $(S_{t+1}) = \frac{t(3t-1)}{2}$.

(2) For
$$n \ge 2$$
, WW(P_n) = $\frac{1}{24}(n^4 + 2n^3 - n^2 - 2n)$.

(3) For
$$n \ge 3$$
, WW (C_n) =
$$\begin{cases} \frac{n^2(n+1)(n+2)}{48}, & \text{if } n \text{ is even} \\ \frac{n(n^2-1)(n+3)}{48}, & \text{if } n \text{ is odd.} \end{cases}$$

Now using corollary 3.2 and Lemma 3.3, we obtain the hyper Wiener index of the square comb lattice Cq(N).

Example 3.4. WW $(Cq(N)) = \frac{n^2(n-1)}{24} (12n^3 - 2n^2 + 2).$

By using Theorem 3.1 and Lemma 3.3, we obtain the hyper Wiener index of the *t*-fold bristled graph $Brs_t(G)$.

Example3.5. WW(Brs_t(G))=
$$(1+t)^2WW(G) + 2t(t+1)W(G) + \frac{nt}{2}(3nt+2n-3)$$
.

From the above formula and Lemma 3.3, the exact hyper–Wiener indices of the t-fold bristled graph of P_n and C_n are computed.

Example 3.6 1. WW(Brs_t(P_n)) = $\frac{n(n^2-1)(t+1)}{24}(nt+n+10t+2) + \frac{nt}{2}(3nt+2n-3)$.

2. WW(Brs_t(
$$\mathcal{L}_n$$
))=

$$\left(\frac{\frac{n^{2}(t+1)}{48}(n^{2}t+15nt+2t+n^{2}+3n+2)+\frac{nt}{2}(3nt+2n-3), if n is even}{\frac{n(n^{2}-1)(t+1)}{48}(nt+15t+n+3)+\frac{nt}{2}(3nt+2n-3), if n is odd.}\right)$$

- 3. WW($P_n{S_3}$) = $\frac{n}{8}(3n^3 + 22n^2 + 61n 46)$.
- 4. WW($P_n{K_r}$) = $\frac{n}{24}(r(n^2-1)(nr+10r-8)+12(r-1)(3nr-n-2r+1))$.

5. WW(
$$P_n{K_3}$$
) = $\frac{n}{8}(3n^3 + 22n^2 + 61n - 62)$.

Theorem 3.7. Let G be a connected graph with n vertices. Then $WW(K_2 \cdot G) = 4WW(G) + 3n$.

Proof. By the definition of the hyper–Wiener index, we have $WW(K_2 \cdot G) = \frac{W(K_2 \cdot G)}{2} + \frac{1}{2} \sum_{(u_i, v_j), (u_k, v_r) \in V(K_2 \cdot G), (u_i, v_j) \neq (u_k, v_r)} d^2_{(K_2 \cdot G)} ((u_i, v_j), (u_k, v_r))$

$$= \frac{W(K_{2} \cdot G)}{2} + \frac{1}{2} \left(\sum_{(u_{i}, v_{j}), (u_{i}, v_{r}) \in V(K_{2} \cdot G), j \neq r} d^{2}_{(K_{2} \cdot G)}((u_{i}, v_{j}), (u_{i}, v_{r})) + \sum_{(u_{i}, v_{j})(u_{k}, v_{r}) \in V(K_{2} \cdot G), i \neq k} d^{2}_{(K_{2} \cdot G)}((u_{i}, v_{j}), (u_{k}, v_{r}))) \right)$$

$$= \frac{W(K_{2} \cdot G)}{2} + \frac{1}{2} \left(\sum_{u_{i} \in V(K_{2})} \sum_{v_{j} v_{k} \in V(G), j \neq r} d^{2}_{G}(v_{j}, v_{r}) + \sum_{v_{j} \in V(G)} (4 + \sum_{v_{r} \in V(G), j \neq r} d^{2}_{G}(v_{j}, v_{r})) \right)$$

$$= 2W(G) + n$$

$$+ \frac{1}{2} \left(2 \sum_{v_{j} v_{k} \in V(G), j \neq r} d^{2}_{G}(v_{j}, v_{r}) + \sum_{v_{j} \in V(G)} \sum_{v_{r} \in V(G), j \neq r} d^{2}_{G}(v_{j}, v_{r}) + 4n \right)$$

= 4WW(G) + 3n.

Theorem 3.8. Let G be a connected graph with n vertices. Then

WW
$$(K_2 * G) = \frac{n(8n-5)}{2}$$
.

4. Reverse–Wiener index

By definition it is easy to see that $D(G\{H\})=D(G)+2e(h)$, then by Theorem 2.1 and by a simple calculation, we have the following theorem on the reverse wiener index of the cluster of two graphs.

Theorem 4.1. Let G and H be graphs with n_1 and n_2 vertices and let the copies of H used in the construction of $G\{H\}$ be rooted in vertex h. Then $\wedge(G\{H\}) = \frac{n_1 n_2}{2} \left((n_1 n_2 - 1) (2e(h) + D(G)) - 2(n_1 - 1) D_H(h) \right) - n_2^2 W(G) - n_1 W(H)$, where $D_H(h) = \sum_{u \in V(H)} d_H(u, h)$.

Corollary 4.2. Let G be graph of n vertex and let the copies of G used in the construction of $G\{G\}$ be rooted in vertex h. Then $\Lambda(G\{G\}) = \frac{n^2(n-1)}{2} ((n+1)(2e(h) + D(G)) - 2D_G(h)) - n(n+1)W(G)$, where $D_G(h) = \sum_{u \in V(G)} d_H(u, h)$.

By using Theorem 4.1, we obtain the reverse Wiener index of the *t*-fold bristled graph $Brs_t(G)$.

Example 4.3. $\Lambda(Brs_t(G)) = \frac{n}{2}((t+1)(nt+3n+2t-3)-2t^2) - (t+1)^2 W(G).$

Example 4.4. 1.
$$\wedge (Cq(N)) = \frac{n^2(n-1)}{6} (5n^2 + n - 10).$$

2. $\wedge (Brs_t(P_n)) = \frac{n}{6} ((t+1)(3nt+9n+7t-n^2-tn^2-8)-6t^2).$
3. $\wedge (Brs_t(C_n)) = \begin{cases} \frac{n}{8} ((t+1)(4nt+12n+8t-n^2-tn^2-12)-8t^2), if n \text{ is even} \\ \frac{n}{8} ((t+1)(4nt+12n+9t-n^2-tn^2-11)-8t^2), if n \text{ is odd.} \end{cases}$
4. $\wedge (P_n\{S_3\}) = \frac{n}{2} (15n-3n^2-2).$
5. $\wedge (P_n\{K_r\}) = \frac{nr}{6} (2rn^2-3nr+3n+4r-6).$
6. $\wedge (P_n\{K_3\}) = 3n(n^2-n+1).$

7. $\Lambda(P_n\{W_r\}) = \frac{n}{6}(2r^2n^2 - 3nr^2 + 3nr + 13r^2 - 27r + 12), r \ge 4.$

Using theorem 2.1, $D(K_2 \cdot G) = D(G)$ and $D(K_2 \cdot G) = 2$, we have the following theorems.

Theorem 4.5. Let G be a connected graph with n vertices. Then $\land (K_2 \cdot G) = n(2n-1)D(G)-4W(G)-2n$.

Theorem 4.6. Let G be a connected graph with n vertices. Then $\wedge (K_2 * G) = n^2$.

References

- [1] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249.
- [2] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [3] M. Hoji, Z. Luo, E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855.
- [4] W. Imrich, S. Klavzar, Product graphs: Structure and Recognition, John Wiley, New York (2000).
- [5] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407.
- [6] S. Klavzar, P. Zigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233.
- [7] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle- containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
- [8] W. Linert, F. Renz, K. Kleestorfer, I. Lukovits, An algorithm for the computation of the hyper-Winer index for the characterization and discrimination of branched acyclic molecules, Comput. Chem. 19 (1995) 395-401.
- [9] I. Lukovits, A Note on a formula for the hyper-Wiener index of some trees, J. Chem. Inf. Comput. Sci. 34 (1994) 1079-1081.
- [10] A. Mamut, E. Vumar, Vertex vulnerability parameters of Kronecker products of complete graphs, Inform. Process. Lett. 106 (2008) 258-262.
- [11] D.E. Needham, I.C. Wei, P.G. Seybold, Molecular modeling of the physical properties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186-4194.

- [12] M. Randic, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
- [13] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. [14] H. Wiener, Structural determination of the para _ n boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
- [14] A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73(2000) 923-941.
- [15] O. Ivanciu'c, T. Ivanciuc, A.T. Balaban, Quantitative structure property relationship valuation of structural descriptors derived from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1(2002)467-487.
- [16] X. Cai, B. Zhou, Reverse Wiener indices of connected graphs, MATCH Commun. Math. Comput. Chem. 60(2008)95-105.
- [17] W. Luo, B. Zhou, Further properties of reverse Wiener index, MATCH Commun. Math. Comput. Chem. 61(2009)653-661.
- [18] B. Zhang, B. Zhou, Modified and reverse Wiener indices of trees, Z. Nat. forsch. 61a(2006)536-540.